Skip to main content
Log in

Metallomic study on plasma samples from Nile tilapia using SR-XRF and GFAAS after separation by 2D PAGE: initial results

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An investigation was made on plasma samples obtained after protein separation. The proteome of the plasma of Nile tilapia (Oreochromis niloticus) was separated by 2D PAGE, and manganese and zinc in protein spots was qualitatively and quantitatively determined by synchrotron radiation X-ray fluorescence (SR-XRF) and graphite furnace atomic absorption spectrometry (GFAAS). Manganese and zinc are present in four and six plasma protein spots, respectively. These ions are bound to proteins with molecular weights ranging from 19 to 70 kDa and with isoelectric point (pI) ranging from 4.7 to 6.3. The concentrations of manganese and zinc bound to these proteins as determined by GFAAS following acid digestion of the spots range from 0.8 to 2.6 mg of manganese, and from 1.0 to 6.3 mg of zinc, respectively, per g of protein.

2D-Page Plasma

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. FAO (2002) The state of world’s fisheries and aquaculture 2002. FAO Information Division, Rome

    Google Scholar 

  2. FAO (2006) State of world aquaculture 2006. FAO fisheries technical paper, n.500. FAO, Rome, Italy, p 134

  3. Lovshin LL (2000) Tilápia aquaculture in Brazil. In: Costa-Pierce BA, Rakocy JE (eds) Tilápia aquaculture in Americas, v.2. The World Aquaculture Society, Baton Rouge, pp 133–140

    Google Scholar 

  4. Sá MVC, Pezzato LE, Barros MM, Padilha PM (2004) Optimum zinc supplementation level in Nile tilapia Oreochromis niloticus juveniles diets. Aquaculture 238:385–401. doi:10.1016/j.aquaculture.2004.06.011

    Article  Google Scholar 

  5. Sá MVC, Pezzato LE, Barros MM, Padilha PM (2005) Relative bioavailability of zinc in supplemental inorganic and organic sources for Nile tilapia Oreochromis niloticus fingerlings. Aquac Nutr 11:273–281. doi:10.1111/j.1365-2095.2005.00352.x

    Article  Google Scholar 

  6. Silva FA, Neves RCF, Quintero-Pinto LG, Padilha CCF, Jorge SMA, Barros MM, Pezzato LE, Padilha PM (2007) Determination of selenium by GFAAS in slurries of fish feces to estimate the bioavailability of this micronutrient in feed used in pisciculture. Chemosphere 68:1542–1547. doi:10.1016/j.chemosphere.2007.03.003

    Article  CAS  Google Scholar 

  7. Neves RCF, Moraes PM, Saleh MAD, Loureiro VR, Barros MM, Padilha CCF, Jorge SMA, Padilha PM (2009) FAAS determination of metal nutrients in fish feed after ultrasound extraction. Food Chem 113:679–683. doi:10.1016/j.foodchem.2008.07.070

    Article  CAS  Google Scholar 

  8. Garcia JS, Magalhães CS, Arruda MAZ (2006) Trends in metal-binding and metalloprotein analysis. Talanta 69:1–15. doi:10.1016/j.talanta.2005.08.041

    Article  CAS  Google Scholar 

  9. Loureiro VR, Saleh MAD, Moraes PM, Neves RCF, Padilha CCF, Padilha PM (2007) Manganese determination by GFAAS in feces and fish feed slurries. J Braz Chem Soc 18:1235–1241. doi:10.1590/S0103-50532007000600019

    Article  CAS  Google Scholar 

  10. Silva FA, Padilha CCF, Pezzato LE, Barros MM, Padilha PM (2006) Determination of chromium by GFAAS in slurries of fish feces to estimate the apparent digestibility of nutrients in feed used in pisciculture. Talanta 69:1025–1030. doi:10.1016/j.talanta.2005.12.008

    Article  CAS  Google Scholar 

  11. Haraguchi H (2004) Metallomics as integrated biometal science. J Anal At Spectrom 19:5–14. doi:10.1039/B308213J

    Article  CAS  Google Scholar 

  12. Szpunar P (2004) Metallomics: a new frontier in analytical chemistry. Anal Bioanal Chem 378:54–56. doi:10.1007/s00216-003-2333-z

    Article  CAS  Google Scholar 

  13. Gómez-Ariz JL, Garcia-Barrera T, Lorenzo F, Bernal V, Villegas MJ, Oliveira V (2004) Use of mass spectrometry techniques for the characterization of metal bound to proteins (metallomics) in biological systems. Anal Chim Acta 524:15–22. doi:10.1016/j.aca.2004.01.061

    Article  Google Scholar 

  14. Lima PM, Neves RCF, Santos FA, Pérez CA, Silva MAO, Arruda MAZ, Castro GR, Padilha PM (2010) Analytical approach to the metallomic of Nile tilapia (Oreochromis niloticus) liver tissue by SRXRF and FAAS after 2D-PAGE separation: preliminary results. Talanta 82:1052–1056. doi:10.1016/j.talanta.2010.06.023

    Article  CAS  Google Scholar 

  15. Hames BD, Rickwood D (1990) Gel electrophoresis of proteins: a practical approach, 2nd edn. IRL, New York, p 383

    Google Scholar 

  16. Berkelman T, Stenstedt T (1998) 2-D electrophoresis: principles and methods. Amersham Biosciences, Uppsala, p 101

    Google Scholar 

  17. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  18. Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG (2004) Blue silver: a very sensitive colloidal coomassie G-250 staining for proteome analysis. Electrophoresis 25:1327–1333. doi:10.1002/elps.200305844

    Article  CAS  Google Scholar 

  19. Verkemans B, Janssens K, Vincze L, Adams F, Van Espem P (1994) Analysis of X-ray spectra by iterative least square (AXIL): new developments. X-ray Spectrom 23:278–285. doi:10.1002/xrs.1300230609

    Article  Google Scholar 

  20. Vekemans B, Janssens K, Vincze L, Adams F, Van Espen P (1994) Analysis of X-ray spectra by iterative least squares (AXIL): new developments. X-Ray Spectrom 23:278–285. doi:10.1002/xrs.1300230609

    Article  CAS  Google Scholar 

  21. Saleh MAD, Neves RCF, Silva FA, Moraes PM, Loureiro VR, Roldan PS, Padilha PM (2009) GFAAS determination of zinc in fish feed and feces using slurry sampling. Food Anal Meth 2:162–168. doi:10.1007/s12161-008-9053-0

    Article  Google Scholar 

  22. Weseloh G, Kuhbacher M, Bertelsmann H, Ozaslan M, Kyriakopoulos A, Knochel A, Behne D (2004) Analysis of metal-containing proteins by gel electrophoresis and synchrotron radation X-ray fluorescence. J Radioanal Nucl Chem 259:473–477. doi:10.1023/B:JRNC.0000020921.66046.1c

    Article  CAS  Google Scholar 

  23. Garcia JS, Sousa GHMF, Eberlin MN, Arruda MAZ (2009) Evaluation of metal-ion stress in sunflower (Helianthus annus L.) leaves through proteomic changes. Metallomics 1:107–113. doi:10.1039/B816146A

    Article  CAS  Google Scholar 

  24. Verbi FM, Arruda SCC, Rodriguez APM, Pérez CA, Arruda MAZ (2005) Metal-binding proteins scanning and determination by combining gel electrophoresis, synchrotron radiation X-ray fluorescence and atomic spectrometry. J Biochem Biophys Meth 62:97–109. doi:10.1016/j.jbbm.2004.09.008

    Article  CAS  Google Scholar 

  25. Sussulini A, Garcia JS, Mesko MF, Moraes DP, Flores EM, Pérez CA, Arruda MAZ (2007) Evaluation of soybean seed protein extraction focusing on metalloprotein analysis. Microchim Acta 158:173–180. doi:10.1007/s00604-006-0678-7

    Article  CAS  Google Scholar 

  26. Wind M, Lehamann WD (2004) Element and molecular mass spectrometry—an emerging analytical team in the life sciences. J Anal At Spectrom 19:20–25. doi:10.1039/B309482K

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Brazilian institutions FAPESP (Processes 03/13362-6, 07/59778-0 and 08/55903-7) and CNPq (Process 301123/2005-5) for their financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro de Magalhães Padilha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, F.A., Lima, P.M., Neves, R.C.F. et al. Metallomic study on plasma samples from Nile tilapia using SR-XRF and GFAAS after separation by 2D PAGE: initial results. Microchim Acta 173, 43–49 (2011). https://doi.org/10.1007/s00604-010-0522-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0522-y

Keywords

Navigation