Skip to main content
Log in

Gold nanoclusters as a quenchable fluorescent probe for sensing oxygen at high temperatures

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Gold nanoclusters (AuNCs) capped with lipoic acid (LA) or templated with bovine serum albumin (BSA) are shown to be viable fluorescent probes for oxygen (O2) which acts as a collisional quencher. Quenching of fluorescence, with its lifetimes in the order of 123 ± 9 ns (LA) and 153 ± 15 ns (BSA) (in aqueous solution), is best measured at excitation/emission wavelengths of 400/680 nm and 375/650 nm respectively. It follows the Stern-Volmer model, whose quenching constants (Ksv) and quenching efficiencies (γ) are 1400 M−1 and 0.52 for AuNC@LA and 4479 M−1 and 0.90 for AuNC@BSA. The probes were immobilized on a silica support and tested for response to O2 in gas phase using a commercial instrument. The effect of temperature on the fluorescence of AuNC@LA was studied in the range from 30 to 210 °C. Fluorescence intensity slightly decreases with temperature in the first heating cycle but remains constant in further cycles. The AuNC@LA were studied for their response to O2 in the temperature range from 30 to 100 °C, and even at 100 °C they respond to O2, with a Ksv that slightly drops with increasing temperature. Measuring in gas phase at 100 °C, the sensor has a detection limit of 3% (V/V) of O2 at a signal-to-noise ratio of 3.

Gold-nanoclusters (AuNCs) fluorescence intensity (λexc = 400 nm, λem = 680 nm) remains constant from 30 to 210 °C and is quenched by O2 following a collisional mechanism. The Stern-Volmer constant (Ksv) slightly changes from 25 °C to 100 °C (at least).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zheng J, Nikovich PR, Dickson RM (2007) Highly fluorescent noble metal quantum dots. Annu Rev Phys Chem 58:409–431

    Article  CAS  Google Scholar 

  2. Zheng J, Zhou C, Yu M, Liu J (2012) Different sized luminescent gold nanoparticles. Nano 4:4073–4083

    CAS  Google Scholar 

  3. Wolfbeis OS (2015) An overeview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev 44:4743–4768

    Article  CAS  Google Scholar 

  4. Cui M, Zho Y, Song Q (2014) Synthesis, optical properties and applications of ultra-small luminescent gold nanoclusters. TrAC Trends Anal Chem 57:73–82

    Article  CAS  Google Scholar 

  5. Chen LY, Wang CW, Yuan Z, Chang HT (2015) Fluorescent gold nanoclusters: recent advances in sensing and imaging. Anal Chem 87:216–229

    Article  CAS  Google Scholar 

  6. Li H, Zhu W, Wan A, Liu L (2017) The mechanism and application of the protein-stabilized gold nanocluster sensing system. Analyst 142:567–581

    Article  CAS  Google Scholar 

  7. Rasheed PA, Lee JS (2017) Recent advances in optical detection of dopamine using nanomaterials. Microchim Acta 184:1239–1266

    Article  Google Scholar 

  8. Korotcenkov G, Brinzari V, Cho BK (2016) Conductometric gas sensors based on metal oxides modified with gold nanoparticles: a review. Microchim Acta 183:1033–1054

    Article  CAS  Google Scholar 

  9. Miller DR, Akbar SA, Morris PA (2014) Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens Actuators B Chem 204:250–272

    Article  CAS  Google Scholar 

  10. Papkovsky DB, Dmitriev RI (2013) Biological detection by optical oxygen sensing. Chem Soc Rev 42:8700–8732

    Article  CAS  Google Scholar 

  11. Wang X, Wolfbeis OS (2014) Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem Soc Rev 43:3666–3761

    Article  CAS  Google Scholar 

  12. Lehner P, Staudinger C, Borisov SM, Regensburger J, Klimant I (2015) Intrinsic artefacts in optical oxygen sensors-how reliable are our measurements. Chem Eur J 21:3978–3986

    Article  CAS  Google Scholar 

  13. Zou XS, Pan TT, Chen L, Tian YQ, Zhang WW (2017) Luminescence materials for pH and oxygen sensing in microbial cells-structures, optical properties, and biological applications. Crit Rev Biotechnol 37:723–738

    Article  CAS  Google Scholar 

  14. Wolfbeis O (2015) Luminescent sensing and imaging of oxygen: fierce competition to the Clark electrode. BioEssays 37:921–928

    Article  CAS  Google Scholar 

  15. Kenner RD, Khan AU (1976) Molecular oxygen enhanced fluorescence of organic molecules in polymer matrices: a singlet oxygen feedback mechanism. J Chem Phys 64:1877–1882

    Article  CAS  Google Scholar 

  16. Vishnoi G, Morisawa M, Muto S (1998) A new plastic optical fiber sensor for oxygen based on fluorescence enhancement. Opt Rev 5:13–15

    Article  CAS  Google Scholar 

  17. Ghosh RN, Askeland PA, Kramer S, Loloee R (2011) Optical dissolved oxygen sensor utilizing molybdenum chloride cluster phosphorescence. Appl Phys Lett 98:221103

    Article  Google Scholar 

  18. Wang Y, Wang Y, Zhou F, Kim P, Xia Y (2012) Protein-protected Au clusters as a new class of nanoscale biosensor for label-free fluorescence detection of proteases. Small 8:3769–3773

    Article  CAS  Google Scholar 

  19. Das T, Ghosh P, Shanavas MS, Maity A, Mondal S, Purkayastha P (2012) Protein-templated gold nanoclusters: size dependent inversion of fluorescence emission in the presence of molecular oxygen. Nano 4:6018–6024

    CAS  Google Scholar 

  20. Galbán J, Sanz-Vicente I, Castillo JR, Luque de Castro MD (2001) Integrated analytical pervaporation-gas phase absorptiometry: theoretical aspects and applications. Anal Chim Acta 434:81–93

    Article  Google Scholar 

  21. Aldeek F, Muhammed MH, Palui G, Zhan N, Mattoussi H (2013) Growth of highly fluorescent polyethylene glycol-and zwitterion-functionalized gold nanoclusters. ACS Nano 7:2509–2521

    Article  CAS  Google Scholar 

  22. Lianzhe H, Shuang H, Parveen S (2012) Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters. Biosens Bioelectron 32(1):297–299

    Article  Google Scholar 

  23. Chevrier DM, Chatt A, Zhang P (2012) Properties and applications of protein-stabilized fluorescent gold nanoclusters: short review. J Nanophoton 6:064504

    Article  Google Scholar 

  24. Lin CAJ, Yang TY, Lee CH, Huang SH, Sperling RA, Zanella M, Li JK, Shen JL, Wang HH, Yeh HI, Parak WJ, Chang WH (2009) Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano 3:395–401

    Article  CAS  Google Scholar 

  25. Govindaraju S, Ankireddy SR, Viswanath B, Kim J, Yun K (2017) Fluorescent gold nanoclusters for selective detection of dopamine in cerebrospinal fluid. Sci Rep 7:40298

    Article  CAS  Google Scholar 

  26. Nakano M, Nagai T (2017) Thermometers for monitoring cellular temperature. J Photochem Photobiol C 30:2–9

    Article  CAS  Google Scholar 

  27. Shang L, Stockmar F, Azadfar N, Nienhaus GU (2013) Intracellular thermometry by using fluorescent gold nanoclusters. Angew Chem Int Ed Engl 52:11154–11157

    Article  CAS  Google Scholar 

  28. Jortner J (1971) Radiationless transitions. Pure Appl Chem 27:389–419

    Article  CAS  Google Scholar 

  29. Turro NJ (1991) Modern molecular photochemistry. University science books, Mill Valley, California. Ch. 6 p 187

Download references

Acknowledgements

The authors thank to MINECO of Spain (CTQ2016-76846R), DGA-FEDER funding to Research Groups (E74) and BSH (project “Smart Ovens III”) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Galbán.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 2.82 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín-Barreiro, A., de Marcos, S. & Galbán, J. Gold nanoclusters as a quenchable fluorescent probe for sensing oxygen at high temperatures. Microchim Acta 185, 171 (2018). https://doi.org/10.1007/s00604-018-2676-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2676-y

Keywords

Navigation