Skip to main content

Advertisement

Log in

Colorimetric-enzymatic determination of tyramine by generation of gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

In this paper, it has been demonstrated that Au(III) is able to act instead of O2 in the oxidase enzymatic reaction, so that it becomes reduced to purple gold nanoparticles (AuNPs). The plasmon band (at 540 nm) can be used as the analytical signal. Tyramine has been determined using its enzymatic reaction with tyramine oxidase (TAO). The kinetic of the AuNP formation has been studied in the light of both the Avrami equation for crystallization and the Finke-Watsy mechanism for AuNP nucleation and growth. The effects of the Au(III), TAO and tyramine concentrations on the corresponding kinetic constants have been investigated. Working at room temperature, under optimal conditions (phosphate buffer pH 7.0, TAO 0.5 U.mL−1 Au(III) 1 mM), the linear response ranges from 2.5 × 10−5 M to 3.3 × 10−4 M Tyramine (5.6% RSD) and the LOD is 2.9 × 10−6 M. Under these conditions, the signal is measured after 30 min reaction (to obtain the highest sensitivity), but this time can be significantly reduced by increasing the temperature (the reaction is finished after 4 min when working at 50 °C). The method has been applied to tyramine determination in a cheese sample with good results. The new scheme proposed in this paper can be extended, in principle, to other enzymatic methods based on oxidase enzymes.

Tyramine is determined by measuring the plasmon band of the gold nanoparticles formed during its enzymatic reaction with Tyramine oxidase. Moreover, a mathematical model has been developed to explain the formation of the gold nanoparticles during the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Benkerroum N (2016) Biogenic amines in dairy products: origin, incidence, and control means. Compr Rev Food Sci Food Saf 15:801–826. https://doi.org/10.1111/1541-4337.12212

    Article  PubMed  Google Scholar 

  2. Karovičová J, Kohajdová Z (2005) Biogenic amines in food. Chem Pap 59:70–79

    Google Scholar 

  3. Papageorgiou M, Lambropoulou D, Morrison C, Kłodzińska E, Namieśnik J, Płotka-Wasylka J (2018) Literature update of analytical methods for biogenic amines determination in food and beverages. Trac-Trend Anal Chem 98:128–142. https://doi.org/10.1016/j.trac.2017.11.001

    Article  CAS  Google Scholar 

  4. Ordóñez JL, Troncoso AM, García-Parrilla MDC, Callejón RM (2016) Recent trends in the determination of biogenic amines in fermented beverages–a review. Anal Chim Acta 939:10–25. https://doi.org/10.1016/j.aca.2016.07.045

    Article  PubMed  CAS  Google Scholar 

  5. Wouters J, Perpete P, Hayen P, Anceau N, Durant F (1994) Kinetic characterization of tyramine oxidase of Arthrobacter species. Biochem Mol Biol Int 32:737–743

    PubMed  CAS  Google Scholar 

  6. Lata S, Yadav S, Bhardwaj R, Pundir CS (2011) Amperometric determination of tyramine in sauce and beer by epoxy resin biocomposite membrane bound tyramine oxidase. Sens Instrum Food Qual Saf 5:104–110. https://doi.org/10.1007/s11694-011-9117-5

    Article  Google Scholar 

  7. Lange J, Wittmann C (2002) Enzyme sensor array for the determination of biogenic amines in food samples. Anal Bioanal Chem 372:276–283. https://doi.org/10.1007/s00216-001-1130-9

    Article  PubMed  CAS  Google Scholar 

  8. Osman AM, Wong KKY, Fernyhough A (2006) ABTS radical-driven oxidation of polyphenols: isolation and structural elucidation of covalent adducts. Biochem Biophys Res Commun 346:321–329. https://doi.org/10.1016/j.bbrc.2006.05.118

    Article  PubMed  CAS  Google Scholar 

  9. Scott SL, Chen WJ, Bakac A, Espenson JH (1993) Spectroscopic parameters, electrode potentials, acid ionization constants, and electron exchange rates of the 2, 2′-azinobis (3-ethylbenzothiazoline-6-sulfonate) radicals and ions. J Phys Chem 97:6710–6714. https://doi.org/10.1021/j100127a022

    Article  CAS  Google Scholar 

  10. Zamborini FP, Bao L, Dasari R (2011) Nanoparticles in measurement science. Anal Chem 84:541–576. https://doi.org/10.1021/ac203233q

    Article  CAS  Google Scholar 

  11. Sabela M, Balme S, Bechelany M, Janot JM, Bisetty K (2017) A review of gold and silver nanoparticle-based colorimetric sensing assays. Adv Eng Mater 9:1700270. https://doi.org/10.1002/adem.201700270

    Article  CAS  Google Scholar 

  12. Liu BW, Wu YY, Huang PC, Wu FY (2019) Colorimetric determination of cytosine-rich ssDNA by silver (I)-modulated glucose oxidase-catalyzed growth of gold nanoparticles. Microchim Acta 186:467–468. https://doi.org/10.1007/s00604-019-3591-6

    Article  CAS  Google Scholar 

  13. Li G, Yang M, Chen LC, Gao B, Xiong XL (2015) Colorimetric and visual detection of tyrosine based on its copper-catalyzed enzymatic oxidation to dopamine and subsequent reductive formation of colored gold nanoparticles using copper ions. Microchim Acta 182:13–117. https://doi.org/10.1007/s00604-014-1278-6

    Article  CAS  Google Scholar 

  14. López-Lorente AI, Valcárcel M (2016) The third way in analytical nanoscience and nanotechnology: involvement of nanotools and nanoanalytes in the same analytical process. Trac-Trend Anal Chem 75:1–9. https://doi.org/10.1016/j.trac.2015.06.011

    Article  CAS  Google Scholar 

  15. Xie J, Zheng Y, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 131:888–889. https://doi.org/10.1021/ja806804u

    Article  PubMed  CAS  Google Scholar 

  16. Newman JDS, Blanchard GJ (2006) Formation of gold nanoparticles using amine reducing agents. Langmuir 22:5882–5887. https://doi.org/10.1021/la060045z

    Article  PubMed  CAS  Google Scholar 

  17. Bai J, Flowers K, Benegal S, Calizo M, Patel V, Bishnoi SW (2009) Using the enzymatic growth of nanoparticles to create a biosensor. An undergraduate quantitative analysis experiment. J Chem Educ 86:712. https://doi.org/10.1021/ed086p712

    Article  CAS  Google Scholar 

  18. Alonso-de Castro S, Cortajarena AL, López-Gallego F, Salassa L (2018) Bioorthogonal catalytic activation of platinum and ruthenium anticancer complexes by FAD and flavoproteins. Angew Chem Int Ed 130:3197–3201. https://doi.org/10.1002/ange.201800288

    Article  Google Scholar 

  19. Quist DA, Diaz DE, Liu JJ, Karlin KD (2017) Activation of dioxygen by copper metalloproteins and insights from model complexes. J Biol Inorg Chem 22:253–288. https://doi.org/10.1007/s00775-016-1415-2

    Article  PubMed  CAS  Google Scholar 

  20. Thanh NT, Maclean N, Mahiddine S (2014) Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev 114:7610–7630. https://doi.org/10.1021/cr400544s

    Article  PubMed  CAS  Google Scholar 

  21. You H, Fang J (2016) Particle-mediated nucleation and growth of solution-synthesized metal nanocrystals: a new story beyond the LaMer curve. Nano Today 11:145–167. https://doi.org/10.1016/j.nantod.2016.04.003

    Article  CAS  Google Scholar 

  22. Watzky MA, Finke RG (1997) Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen is the reductant: slow, continuous nucleation and fast autocatalytic surface growth. J Am Chem Soc 119:10382–10400. https://doi.org/10.1021/ja9705102

    Article  CAS  Google Scholar 

  23. Finney EE, Finke RG (2008) Nanocluster nucleation and growth kinetic and mechanistic studies: a review emphasizing transition-metal nanoclusters. J Colloid Interface Sci 317:351–374. https://doi.org/10.1016/j.jcis.2007.05.092

    Article  PubMed  CAS  Google Scholar 

  24. Brazeau AL, Jones ND (2009) Growth mechanisms in nanocrystalline lead sulfide by stopped-flow kinetic analysis. J Phys Chem C 113:20246–20251. https://doi.org/10.1021/jp907270x

    Article  CAS  Google Scholar 

  25. Shields SP, Richards VN, Buhro WE (2010) Nucleation control of size and dispersity in aggregative nanoparticle growth. A study of the coarsening kinetics of thiolate-capped gold nanocrystals. Chem Mater 22:3212–3225. https://doi.org/10.1021/cm100458b

    Article  CAS  Google Scholar 

  26. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102. https://doi.org/10.1021/cr030063a

    Article  PubMed  CAS  Google Scholar 

  27. Enoch S, Quidant R, Badenes G (2004) Optical sensing based on plasmon coupling in nanoparticle arrays. Opt Express 12:3422–3427. https://doi.org/10.1364/OPEX.12.003422

    Article  PubMed  Google Scholar 

  28. Haiss W, Thanh NT, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV− Vis spectra. Anal Chem 79:4215–4221. https://doi.org/10.1021/ac0702084

    Article  PubMed  CAS  Google Scholar 

  29. Khlebtsov NG (2008) Determination of size and concentration of gold nanoparticles from extinction spectra. Anal Chem 80:6620–6625. https://doi.org/10.1021/ac800834n

    Article  PubMed  CAS  Google Scholar 

  30. Shi X, Li D, Xie J, Wang S, Wu Z, Chen H (2012) Spectroscopic investigation of the interactions between gold nanoparticles and bovine serum albumin. Chin Sci Bull 57:1109–1115. https://doi.org/10.1007/s11434-011-4741-3

    Article  CAS  Google Scholar 

  31. Liu X, Atwater M, Wang J, Huo Q (2007) Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloid Surface B 58:3–7. https://doi.org/10.1016/j.colsurfb.2006.08.005

    Article  CAS  Google Scholar 

  32. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248. https://doi.org/10.1021/jp057170o

    Article  PubMed  CAS  Google Scholar 

  33. Leff DV, Ohara PC, Heath JR, Gelbart WM (1995) Thermodynamic control of gold nanocrystal size: experiment and theory. J Phys Chem 99:7036–7041. https://doi.org/10.1021/j100018a041

    Article  CAS  Google Scholar 

  34. Mironov IV, Afanas’eva VA (2010) Gold (III) amine complexes in aqueous alkali solutions. Russ J Inorg Chem + 55:1156–1161. https://doi.org/10.1134/S0036023610070302

    Article  CAS  Google Scholar 

  35. Sjöberg S (1997) Critical evaluation of stability constants of metal-imidazole and metal-histamine systems (technical report). Pure Appl Chem 69:1549–1570. https://doi.org/10.1351/pac199769071549

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Ministry of Economy and Finance (MINECO) of Spain (CTQ2016-76846R) and the Research Groups funding of the Government of Aragón (group E25_17R), for financial support. J Navarro thanks the Government of Aragón (DGA) for a grant. The authors are also very grateful to Dr. Francisco Palacios and Cristina Asensio, MsC, of the Public Health Laboratory of Aragón, for their invaluable help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Galbán.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on IX NyNA 2019. International Congress on Analytical Nanoscience and Nanotechnology

This work was presented at the IX NyNA 2019, International Congress on Analytical Nanoscience and Nanotechnology at Zaragoza (Spain) from 2 - 4 July, 2019. Chairman: Dr. Juan R. Castillo.

Electronic supplementary material

ESM 1

(DOCX 9.30 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarro, J., de Marcos, S. & Galbán, J. Colorimetric-enzymatic determination of tyramine by generation of gold nanoparticles. Microchim Acta 187, 174 (2020). https://doi.org/10.1007/s00604-020-4141-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-4141-y

Keywords

Navigation