Skip to main content

Advertisement

Log in

Conjugated polymer nanoparticles and their nanohybrids as smart photoluminescent and photoresponsive material for biosensing, imaging, and theranostics

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The emergence of conjugated polymers (CPs) has provided a pathway to attain smart multifunctional conjugated polymer nanoparticles (CPNs) with enhanced properties and diverse applications. CPNs based on π-extended CPs exhibit high fluorescence brightness, low cytotoxicity, excellent photostability, reactive oxygen species (ROS) generation ability, high photothermal conversion efficiency (PCE), etc. which endorse them as an excellent theranostic tool. Furthermore, the unique light-harvesting and energy transfer properties of CPNs enables their transformation into smart functional nanohybrids with augmented performance. Owing to such numerous features, simple preparation method and an easy separation process, the CPNs and their hybrids have been constantly rising as a frontrunner in the domain of medicine and much work has been done in the respective research area. This review summarizes the recent progress that has been made in the field of CPNs for biological and biomedical applications with special emphasis on biosensing, imaging, and theranostics. Following an introduction into the field, a first large section provides overview of the conventional as well as recently established synthetic methods for various types of CPNs. Then, the CPNs-based fluorometric assays for biomolecules based on different detection strategies have been described. Later on, examples of CPNs-based probes for imaging, both in vitro and in vivo using cancer cells and animal models have been explored. The next section highlighted the vital theranostic applications of CPNs and corresponding nanohybrids, mainly via imaging-guided photodynamic therapy (PDT), photothermal therapy (PTT) and drug delivery. The last section summarizes the current challenges and gives an outlook on the potential future trends on CPNs as advanced healthcare material.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced with permission from reference [27]

Fig. 4

Reproduced with permission from reference [76]

Fig. 5

Reproduced with permission from reference [85]

Fig. 6

Reproduced with permission from reference [96]

Fig. 7

Reproduced with permission from reference [104]

Fig. 8

Reproduced with permission from reference [106]

Fig. 9

Reproduced with permission from reference [108]

Fig. 10

Reproduced with permission from reference [120]

Fig. 11

Reproduced with permission from reference [128]

Fig. 12

Reproduced with permission from reference [135]

Fig. 13

Reproduced with permission from reference [136]

Fig. 14

Reproduced from Ref. [141] with permission from the Royal Society of Chemistry

Fig. 15

Reproduced with permission from reference [146]

Fig. 16

Reproduced with permission from reference [150]

Fig. 17 

Reproduced with permission from reference [153]

Fig. 18

Reproduced with permission from reference [158]

Fig. 19

Reproduced with permission from reference [161]

Fig. 20

Reproduced with permission from reference [174]

Fig. 21

Reproduced with permission from reference [199]

Fig. 22

Reproduced with permission from reference [196]

Fig. 23

Reproduced with permission from reference [207]

Fig. 24

Reproduced with permission from reference [208]

Similar content being viewed by others

References

  1. Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH). J Chem Soc Chem Commun 1977:578–580. https://doi.org/10.1039/C39770000578

    Article  Google Scholar 

  2. Swager TM (2017) 50th Anniversary Perspective: Conducting/Semiconducting Conjugated Polymers. A Personal Perspective on the Past and the Future. Microchim Acta 50:4867–4886. https://doi.org/10.1021/acs.macromol.7b00582

    Article  CAS  Google Scholar 

  3. He Y, Hu X, Gong Z, Chen S, Yuan R (2020) A novel electrochemiluminescence biosensor based on the self-ECL emission of conjugated polymer dots for lead ion detection. Microchim Acta 187:237. https://doi.org/10.1007/s00604-020-4212-0

    Article  CAS  Google Scholar 

  4. Liu Y, Yan H, Shangguan J, Yang X, Wang M, Liu W (2018) A fluorometric aptamer-based assay for ochratoxin A using magnetic separation and a cationic conjugated fluorescent polymer. Microchim Acta 185:427. https://doi.org/10.1007/s00604-018-2962-8

    Article  CAS  Google Scholar 

  5. Hussain S, Zhao H, Zhou L, Zhou X, Iyer PK, Lv F, Liu L, Wang S (2019) An Optoelectronic Device for Rapid Monitoring of Creatine Kinase Using Cationic Conjugated Polyelectrolyte. Adv Mater Technol 4:1900361. https://doi.org/10.1002/admt.201900361

    Article  CAS  Google Scholar 

  6. Hussain S, Lv F, Qi R, Senthilkumar T, Zhao H, Chen Y, Liu L, Wang S (2020) Förster Resonance Energy Transfer Mediated Rapid and Synergistic Discrimination of Bacteria over Fungi Using a Cationic Conjugated Glycopolymer. ACS Appl Bio Mater 3:20–28. https://doi.org/10.1021/acsabm.9b00691

    Article  CAS  PubMed  Google Scholar 

  7. Hussain S, Malik AH, Iyer PK (2016) FRET-assisted selective detection of flavins via cationic conjugated polyelectrolyte under physiological conditions. J Mater Chem B 4:4439–4446. https://doi.org/10.1039/C6TB01350C

    Article  CAS  PubMed  Google Scholar 

  8. Rochat S, Swager TM (2013) Conjugated Amplifying Polymers for Optical Sensing Applications. ACS Appl Mater Interfaces 5:4488–4502. https://doi.org/10.1021/am400939w

    Article  CAS  PubMed  Google Scholar 

  9. Coakley KM, McGehee MD (2004) Conjugated Polymer Photovoltaic Cells. Chem Mater 16:4533–4542. https://doi.org/10.1021/cm049654n

    Article  CAS  Google Scholar 

  10. Dwivedi AK, Saikia G, Iyer PK (2011) Aqueous polyfluorene probe for the detection and estimation of Fe3+ and inorganic phosphate in blood serum. J Mater Chem 21:2502–2507. https://doi.org/10.1039/C0JM03054F

    Article  CAS  Google Scholar 

  11. Yu K, Park B, Kim G, Kim CH, Park S, Kim J, Jung S, Jeong S, Kwon S, Kang H, Kim J, Yoon MH, Lee K (2016) Optically transparent semiconducting polymer nanonetwork for flexible and transparent electronics. Proc Natl Acad Sci 113:14261. https://doi.org/10.1073/pnas.1606947113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hussain S, Malik AH, Afroz MA, Iyer PK (2015) Ultrasensitive detection of nitroexplosive – picric acid via a conjugated polyelectrolyte in aqueous media and solid support. Chem Commun 51:7207–7210. https://doi.org/10.1039/C5CC02194D

    Article  CAS  Google Scholar 

  13. Hussain S, Malik AH, Iyer PK (2015) Highly Precise Detection, Discrimination, and Removal of Anionic Surfactants over the Full pH Range via Cationic Conjugated Polymer: An Efficient Strategy to Facilitate Illicit-Drug Analysis. ACS Appl Mater Interfaces 7:3189–3198. https://doi.org/10.1021/am507731t

    Article  CAS  PubMed  Google Scholar 

  14. Pecher J, Mecking S (2010) Nanoparticles of Conjugated Polymers. Chem Rev 110:6260–6279. https://doi.org/10.1021/cr100132y

    Article  CAS  PubMed  Google Scholar 

  15. Tuncel D, Demir HV (2010) Conjugated polymer nanoparticles Nanoscale 2:484–494. https://doi.org/10.1039/B9NR00374F

    Article  CAS  PubMed  Google Scholar 

  16. Meher N, Iyer PK (2017) Pendant chain engineering to fine-tune the nanomorphologies and solid state luminescence of naphthalimide AIEEgens: application to phenolic nitro-explosive detection in water. Nanoscale 9:7674–7685. https://doi.org/10.1039/C7NR02174G

    Article  CAS  PubMed  Google Scholar 

  17. Feng L, Zhu C, Yuan H, Liu L, Lv F, Wang S (2013) Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications. Chem Soc Rev 42:6620–6633. https://doi.org/10.1039/C3CS60036J

    Article  CAS  PubMed  Google Scholar 

  18. Wang Y, Feng L, Wang S (2019) Conjugated Polymer Nanoparticles for Imaging, Cell Activity Regulation, and Therapy. Adv Funct Mater 29:1806818. https://doi.org/10.1002/adfm.201806818

    Article  CAS  Google Scholar 

  19. Jiang Y, McNeill J (2017) Light-Harvesting and Amplified Energy Transfer in Conjugated Polymer Nanoparticles. Chem Rev 117:838–859. https://doi.org/10.1021/acs.chemrev.6b00419

    Article  CAS  PubMed  Google Scholar 

  20. Sarkar S, Levi-Polyachenko N (2020) Conjugated polymer nano-systems for hyperthermia, imaging and drug delivery. Adv Drug Delivery Rev 163–164:40–64. https://doi.org/10.1016/j.addr.2020.01.002

    Article  CAS  Google Scholar 

  21. Liu Y, Wu P, Jiang J, Wu J, Chen Y, Tan Y, Tan C, Jiang Y (2016) Conjugated Polyelectrolyte Nanoparticles for Apoptotic Cell Imaging. ACS Appl Mater Interfaces 8:21984–21989. https://doi.org/10.1021/acsami.6b09347

    Article  CAS  PubMed  Google Scholar 

  22. Li K, Ding D, Huo D, Pu KY, Thao NNP, Hu Y, Li Z, Liu B (2012) Conjugated Polymer Based Nanoparticles as Dual-Modal Probes for Targeted In Vivo Fluorescence and Magnetic Resonance Imaging. Adv Funct Mater 22:3107–3115. https://doi.org/10.1002/adfm.201102234

    Article  CAS  Google Scholar 

  23. Cui H, Chen Y, Li L, Wu Y, Tang Z, Fu H, Tian Z (2014) Hybrid fluorescent nanoparticles fabricated from pyridine-functionalized polyfluorene-based conjugated polymer as reversible pH probes over a broad range of acidity-alkalinity. Microchim Acta 181:1529–1539. https://doi.org/10.1007/s00604-014-1219-4

    Article  CAS  Google Scholar 

  24. Clement S, Chen W, Anwer AG, Goldys EM (2017) Verteprofin conjugated to gold nanoparticles for fluorescent cellular bioimaging and X-ray mediated photodynamic therapy. Microchim Acta 184:1765–1771. https://doi.org/10.1007/s00604-017-2145-z

    Article  CAS  Google Scholar 

  25. Wu C, Chiu DT (2013) Highly Fluorescent Semiconducting Polymer Dots for Biology and Medicine. Angew Chem Int Ed 52:3086–3109. https://doi.org/10.1002/anie.201205133

    Article  CAS  Google Scholar 

  26. Di Benedetto F, Camposeo A, Pagliara S, Mele E, Persano L, Stabile R, Cingolani R, Pisignano D (2008) Patterning of light-emitting conjugated polymer nanofibres. Nat Nanotechnol 3:614–619. https://doi.org/10.1038/nnano.2008.232

    Article  CAS  PubMed  Google Scholar 

  27. Kelly TL, Wolf MO (2010) Template approaches to conjugated polymer micro- and nanoparticles. Chem Soc Rev 39:1526–1535. https://doi.org/10.1039/B914333P

    Article  CAS  PubMed  Google Scholar 

  28. Lei W, Si W, Xu Y, Gu Z, Hao Q (2014) Conducting polymer composites with graphene for use in chemical sensors and biosensors. Microchim Acta 181:707–722. https://doi.org/10.1007/s00604-014-1160-6

    Article  CAS  Google Scholar 

  29. Gao D, Hu D, Liu X, Zhang X, Yuan Z, Sheng Z, Zheng H (2020) Recent Advances in Conjugated Polymer Nanoparticles for NIR-II Imaging and Therapy. ACS Appl Mater Interfaces 2:4241–4257. https://doi.org/10.1021/acsapm.0c00679

    Article  CAS  Google Scholar 

  30. MacFarlane LR, Shaikh H, Garcia-Hernandez JD, Vespa M, Fukui T, Manners I (2021) Functional nanoparticles through π-conjugated polymer self-assembly. Nat Rev Mater 6:7–26. https://doi.org/10.1038/s41578-020-00233-4

    Article  CAS  Google Scholar 

  31. Dalkiran B, Brett CMA (2021) Polyphenazine and polytriphenylmethane redox polymer/nanomaterial–based electrochemical sensors and biosensors: a review. Microchim Acta 188:178. https://doi.org/10.1007/s00604-021-04821-1

    Article  CAS  Google Scholar 

  32. Stanley A, Subash CBG (2018) Polymer Conjugated Gold Nanoparticles in Biomedical Applications. Curr Med Chem 25:1433–1445. https://doi.org/10.2174/0929867324666170116123633

    Article  CAS  Google Scholar 

  33. Schanze KS (2004) Organometallic Conjugation: Structures, Reactions and Functions of d−d and d−π Conjugated Systems Edited by Akira Nakamura, Norikazu Ueyama, and Kizashi Yamaguchi (Osaka University). From the Series: Chemical Physics, Volume 73. Kodansha, Ltd: Tokyo. Springer-Verlag: Berlin, Heidelberg, New York. 2002. xvi + 352 pp. $129.00. Kodansha ISBN 4–06–209654–4. Springer-Verlag ISBN 3–540–00088–7. J Am Chem Soc 126: 408–408. https://doi.org/10.1021/ja033547x

  34. Chen X, Hussain S, Hao Y, Tian X, Gao R (2021) Review—Recent Advances of Signal Amplified Smart Conjugated Polymers for Optical Detection on Solid Support. ECS J Solid State Sci Technol 10:037006. https://doi.org/10.1149/2162-8777/abeed1

    Article  CAS  Google Scholar 

  35. Liu B, Wang S, Bazan GC, Mikhailovsky A (2003) Shape-Adaptable Water-Soluble Conjugated Polymers. J Am Chem Soc 125:13306–13307. https://doi.org/10.1021/ja0365072

    Article  CAS  PubMed  Google Scholar 

  36. Zhu C, Yang Q, Liu L, Wang S (2011) A potent fluorescent probe for the detection of cell apoptosis. Chem Commun 47:5524–5526. https://doi.org/10.1039/C0CC05158F

    Article  CAS  Google Scholar 

  37. Moon JH, McDaniel W, MacLean P, Hancock LF (2007) Live-Cell-Permeable Poly(p-phenylene ethynylene). Angew Chem Int Ed 46:8223–8225. https://doi.org/10.1002/anie.200701991

    Article  CAS  Google Scholar 

  38. Neo WT, Ye Q, Shi Z, Chua SJ, Xu J (2018) Influence of catalytic systems in Stille polymerization on the electrochromic performance of diketopyrrolopyrrole-based conjugated polymers. Mater Chem Front 2:331–337. https://doi.org/10.1039/c7qm00377c

    Article  CAS  Google Scholar 

  39. Albernaz VL, Bach M, Weber A, Southan A, Tovar GEM (2018) Active Ester Containing Surfmer for One-Stage Polymer Nanoparticle Surface Functionalization in Mini-Emulsion Polymerization. Polymers 10:408. https://doi.org/10.3390/polym10040408

    Article  CAS  PubMed Central  Google Scholar 

  40. Li K, Pan J, Feng SS, Wu AW, Pu KY, Liu Y, Liu B (2009) Generic Strategy of Preparing Fluorescent Conjugated-Polymer-Loaded Poly(DL-lactide-co-Glycolide) Nanoparticles for Targeted Cell Imaging. Adv Funct Mater 19: liu-3542. https://doi.org/10.1002/adfm.200901098

  41. Howes P, Green M, Levitt J, Suhling K, Hughes M (2010) Phospholipid Encapsulated Semiconducting Polymer Nanoparticles: Their Use in Cell Imaging and Protein Attachment. J Am Chem Soc 132:3989–3996. https://doi.org/10.1021/ja1002179

    Article  CAS  PubMed  Google Scholar 

  42. Chen J, Wang D, Turshatov A, Muñoz-Espí R, Ziener U, Koynov K, Landfester K (2013) One-pot fabrication of amphiphilic photoswitchable thiophene-based fluorescent polymer dots. Polym Chem 4:773–781. https://doi.org/10.1039/C2PY20589K

    Article  CAS  Google Scholar 

  43. Yan C, Sun Z, Guo H, Wu C, Chen Y (2017) Thiophene-fused 1,10-phenanthroline toward a far-red emitting conjugated polymer and its polymer dots: synthesis, properties and subcellular imaging. Mater Chem Front 1:2638–2642. https://doi.org/10.1039/C7QM00379J

    Article  CAS  Google Scholar 

  44. Piwoński H, Michinobu T, Habuchi S (2017) Controlling photophysical properties of ultrasmall conjugated polymer nanoparticles through polymer chain packing. Nat Commun 8:15256. https://doi.org/10.1038/ncomms15256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang J, Wu D, Xie D, Feng F, Schanze KS (2013) Ion-Induced Aggregation of Conjugated Polyelectrolytes Studied by Fluorescence Correlation Spectroscopy. J Phys Chem B 117:16314–16324. https://doi.org/10.1021/jp408370e

    Article  CAS  PubMed  Google Scholar 

  46. Wang C-W, Sinton D, Moffitt MG (2011) Flow-Directed Block Copolymer Micelle Morphologies via Microfluidic Self-Assembly. J Am Chem Soc 133:18853–18864. https://doi.org/10.1021/ja2067252

    Article  CAS  PubMed  Google Scholar 

  47. Wang G, Persson N, Chu PH, Kleinhenz N, Fu B, Chang M, Deb N, Mao Y, Wang H, Grover MA, Reichmanis E (2015) Microfluidic Crystal Engineering of π-Conjugated Polymers. ACS Nano 9:8220–8230. https://doi.org/10.1021/acsnano.5b02582

    Article  CAS  PubMed  Google Scholar 

  48. Huang Y, Moini Jazani A, Howell EP, Oh JK, Moffitt MG (2020) Controlled Microfluidic Synthesis of Biological Stimuli-Responsive Polymer Nanoparticles. ACS Appl Mater Interfaces 12:177–190. https://doi.org/10.1021/acsami.9b17101

    Article  CAS  PubMed  Google Scholar 

  49. Meher N, Iyer PK (2019) Functional group engineering in naphthalimides: a conceptual insight to fine-tune the supramolecular self-assembly and condensed state luminescence. Nanoscale 11:13233–13242. https://doi.org/10.1039/C9NR04593G

    Article  CAS  PubMed  Google Scholar 

  50. Yang G, Liu L, Yang Q, Lv F, Wang S (2012) A Multifunctional Cationic Pentathiophene: Synthesis, Organelle-Selective Imaging, and Anticancer Activity. Adv Funct Mater 22:736–743. https://doi.org/10.1002/adfm.201101764

    Article  CAS  Google Scholar 

  51. Jang SG, Audus DJ, Klinger D, Krogstad DV, Kim BJ, Cameron A, Kim SW, Delaney KT, Hur SM, Killops KL, Fredrickson GH, Kramer EJ, Hawker CJ (2013) Striped, Ellipsoidal Particles by Controlled Assembly of Diblock Copolymers. J Am Chem Soc 135:6649–6657. https://doi.org/10.1021/ja4019447

    Article  CAS  PubMed  Google Scholar 

  52. Hittinger E, Kokil A, Weder C (2004) Synthesis and Characterization of Cross-Linked Conjugated Polymer Milli-, Micro-, and Nanoparticles. Angew Chem Int Ed 116:1844–1847. https://doi.org/10.1002/ange.200352863

    Article  Google Scholar 

  53. Müller K, Klapper M, Müllen K (2006) Synthesis of Conjugated Polymer Nanoparticles in Non-Aqueous Emulsions. Macromol Rapid Commun 27:586–593. https://doi.org/10.1002/marc.200600027

    Article  CAS  Google Scholar 

  54. Jang J, Oh JH, Stucky GD (2002) Fabrication of Ultrafine Conducting Polymer and Graphite Nanoparticles. Angew Chem Int Ed 41:4016–4019. https://doi.org/10.1002/1521-3773(20021104)41:21%3c4016::AID-ANIE4016%3e3.0.CO;2-G

    Article  CAS  Google Scholar 

  55. Mumtaz M, de Cuendias A, Putaux J-L, Cloutet E, Cramail H (2006) Synthesis of PEDOT Nanoparticles and Vesicles by Dispersion Polymerization in Alcoholic Media. Macromol Rapid Commun 27:1446–1453. https://doi.org/10.1002/marc.200600343

    Article  CAS  Google Scholar 

  56. Mumtaz M, Lecommandoux S, Cloutet E, Cramail H (2008) Synthesis of Calibrated Poly(3,4-ethylenedioxythiophene) Latexes in Aqueous Dispersant Media. Langmuir 24:11911–11920. https://doi.org/10.1021/la801591d

    Article  CAS  PubMed  Google Scholar 

  57. Bremer LGB, Verbong MWCG, Webers MAM, van Doorn MAMM (1997) Preparation of core-shell dispersions with a low tg polymer core and a polyaniline shell. Synth Met 84:355–356. https://doi.org/10.1016/S0379-6779(97)80779-5

    Article  CAS  Google Scholar 

  58. Wiersmavd Steeg , Jongeling AEL M AT J M (1995) Waterborne core-shell dispersions based on intrinsically conducting polymers for coating applications. Synth Met 71:2269–2270. https://doi.org/10.1016/0379-6779(94)03254-4

    Article  Google Scholar 

  59. Barthet C, Armes SP, Chehimi MM, Bilem C, Omastova M (1998) Surface Characterization of Polyaniline-Coated Polystyrene Latexes. Langmuir 14:5032–5038. https://doi.org/10.1021/la980102r

    Article  CAS  Google Scholar 

  60. Lascelles SF, Armes SP (1997) Synthesis and characterization of micrometre-sized, polypyrrole-coated polystyrene latexes. J Mater Chem 7:1339–1347. https://doi.org/10.1039/A700237H

    Article  CAS  Google Scholar 

  61. Lascelles SF, Armes SP (1995) Synthesis and characterization of micrometersized polypyrrole-coated polystyrene latexes*. Adv Mater 7:864–866. https://doi.org/10.1002/adma.19950071011

    Article  CAS  Google Scholar 

  62. Khan MA, Armes SP, Perruchot C, Ouamara H, Chehimi MM, Greaves SJ, Watts JF (2000) Surface Characterization of Poly(3,4-ethylenedioxythiophene)-Coated Latexes by X-ray Photoelectron Spectroscopy. Langmuir 16:4171–4179. https://doi.org/10.1021/la991390+

    Article  CAS  Google Scholar 

  63. Kelly TL, Yamada Y, Che SPY, Yano K, Wolf MO (2008) Monodisperse Poly(3,4-ethylenedioxythiophene)–Silica Microspheres: Synthesis and Assembly into Crystalline Colloidal Arrays. Adv Mater 20:2616–2621. https://doi.org/10.1002/adma.200703131

    Article  CAS  Google Scholar 

  64. Kelly TL, Yamada Y, Schneider C, Yano K, Wolf MO (2009) Enhanced Optical Properties and Opaline Self-Assembly of PPV Encapsulated in Mesoporous Silica Spheres. Adv Funct Mater 19:3737–3745. https://doi.org/10.1002/adfm.200901484

    Article  CAS  Google Scholar 

  65. Kelly TL, Che SPY, Yamada Y, Yano K, Wolf MO (2008) Influence of Surface Morphology on the Colloidal and Electronic Behavior of Conjugated Polymer−Silica Microspheres. Langmuir 24:9809–9815. https://doi.org/10.1021/la8013688

    Article  CAS  PubMed  Google Scholar 

  66. Liu B, Bazan GC (2004) Interpolyelectrolyte Complexes of Conjugated Copolymers and DNA: Platforms for Multicolor Biosensors. J Am Chem Soc 126:1942–1943. https://doi.org/10.1021/ja038667j

    Article  CAS  PubMed  Google Scholar 

  67. Zhang SW, Swager TM (2003) Fluorescent Detection of Chemical Warfare Agents: Functional Group Specific Ratiometric Chemosensors. J Am Chem Soc 125:3420–3421. https://doi.org/10.1021/ja029265z

    Article  CAS  PubMed  Google Scholar 

  68. Yuan H, Qi J, Xing C, An H, Niu R, Zhan Y, Fan Y, Yan W, Li R, Wang B, Wang S (2015) Graphene-Oxide-Conjugated Polymer Hybrid Materials for Calmodulin Sensing by Using FRET Strategy. Adv Funct Mater 25:4412–4418. https://doi.org/10.1002/adfm.201501668

    Article  CAS  Google Scholar 

  69. Wang X, Li S, Zhang P, Lv F, Liu L, Li L, Wang S (2015) An Optical Nanoruler Based on a Conjugated Polymer−Silver Nanoprism Pair for Label-Free Protein Detection. Adv Mater 27:6040–6045. https://doi.org/10.1002/adma.201502880

    Article  CAS  PubMed  Google Scholar 

  70. Fang Z, Pu KY, Liu B (2008) Asymmetric Fluorescence Quenching of Dual-Emissive Porphyrin-Containing Conjugated Polyelectrolytes for Naked-Eye Mercury Ion Detection. Macromolecules 41:8380–8387. https://doi.org/10.1021/ma801874z

    Article  CAS  Google Scholar 

  71. Liang J, Li K, Liu B (2013) Visual sensing with conjugated polyelectrolytes. Chem Sci 4:1377–1394. https://doi.org/10.1039/C2SC21792A

    Article  CAS  Google Scholar 

  72. Malik AH, Hussain S, Kalita A, Iyer PK (2015) Conjugated Polymer Nanoparticles for the Amplified Detection of Nitro-explosive Picric Acid on Multiple Platforms. ACS Appl Mater Interfaces 7:26968–26976. https://doi.org/10.1021/acsami.5b08068

    Article  CAS  PubMed  Google Scholar 

  73. Ponta H, Sherman L, Herrlich PA (2003) CD44: From adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4:33–45. https://doi.org/10.1038/nrm1004

    Article  CAS  PubMed  Google Scholar 

  74. Ishimoto T, Nagano O, Yae T, Tamada M, Motohara T, Oshima H, Oshima M, Ikeda T, Asaba R, Yagi H, Masuko T, Shimizu T, Ishikawa T, Kai K, Takahashi E, Imamura Y, Baba Y, Ohmura M, Suematsu M, Baba H, Saya H (2011) CD44 Variant Regulates Redox Status in Cancer Cells by Stabilizing the xCT Subunit of System xc- and Thereby Promotes Tumor Growth. Cancer Cell 19:387–400. https://doi.org/10.1016/j.ccr.2011.01.038

    Article  CAS  PubMed  Google Scholar 

  75. Cheng P, Miao Q, Li J, Huang J, Xie C, Pu K (2019) Unimolecular Chemo-fluoro-luminescent Reporter for Crosstalk-Free Duplex Imaging of Hepatotoxicity. J Am Chem Soc 141:10581–10584. https://doi.org/10.1021/jacs.9b02580

    Article  CAS  PubMed  Google Scholar 

  76. Huang Y, Yao X, Zhang R, Ouyang L, Jiang R, Liu X, Song C, Zhang G, Fan Q, Wang L, Huang W (2014) Cationic Conjugated Polymer/Fluoresceinamine-Hyaluronan Complex for Sensitive Fluorescence Detection of CD44 and Tumor-Targeted Cell Imaging. ACS Appl Mater Interfaces 6:19144–19153. https://doi.org/10.1021/am505113p

    Article  CAS  PubMed  Google Scholar 

  77. Choi KY, Chung H, Min KH, Yoon HY, Kim K, Park JH, Kwon IC, Jeong SY (2010) Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials 31:106–114. https://doi.org/10.1016/j.biomaterials.2009.09.030

    Article  CAS  PubMed  Google Scholar 

  78. Twomey M, Na Y, Roche Z, Mendez E, Panday N, HeJ MJH (2013) Fabrication of Core-Shell Nanoparticles via Controlled Aggregation of Semiflexible Conjugated Polymer and Hyaluronic Acid. Macromolecules 46:6374–6378. https://doi.org/10.1021/ma400996y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chong H, Zhu C, Song J, Feng L, Yang Q, Liu L, Lv F, Wang S (2013) Preparation and Optical Property of New Fluorescent Nanoparticles. Macromol Rapid Commun 34:736–742. https://doi.org/10.1002/marc.201200755

    Article  CAS  PubMed  Google Scholar 

  80. Huang Y, Song C, Li H, Zhang R, Jiang R, Liu X, Zhang G, Fan Q, Wang L, Huang W (2015) Cationic Conjugated Polymer/Hyaluronan-Doxorubicin Complex for Sensitive Fluorescence Detection of Hyaluronidase and Tumor-Targeting Drug Delivery and Imaging. ACS Appl Mater Interfaces 7:21529–21537. https://doi.org/10.1021/acsami.5b06799

    Article  CAS  PubMed  Google Scholar 

  81. Han Y, Chen T, Li Y, Chen L, Wei L, Xiao L (2019) Single-Particle Enumeration-Based Sensitive Glutathione S-Transferase Assay with Fluorescent Conjugated Polymer Nanoparticle. Anal Chem 91:11146–11153. https://doi.org/10.1021/acs.analchem.9b01849

    Article  CAS  PubMed  Google Scholar 

  82. Wang S, Huang M, Hua J, Wei L, Lin S, Xiao L (2021) Digital counting of single semiconducting polymer nanoparticles for the detection of alkaline phosphatase. Nanoscale 13:4946–4955. https://doi.org/10.1039/D0NR09232K

    Article  CAS  PubMed  Google Scholar 

  83. Wang Q-b, Zhang C-j, Lu Q, Liu Z-e, Yao J-s, Zhang X (2020) A “turn-on” fluorescence platform of detection glutathione using MnO2 nanosheets quenched fluorescent conjugated polymer nanoparticles. Dyes Pigm 176:108189. https://doi.org/10.1016/j.dyepig.2020.108189

    Article  CAS  Google Scholar 

  84. Yan S, Huang R, Wang C, Zhou Y, Wang J, FuB WX, Zhou X (2012) A Two-photon Fluorescent Probe for Intracellular Detection of Tyrosinase Activity. Chem-Asian J 7:2782–2785. https://doi.org/10.1002/asia.201200762

    Article  CAS  PubMed  Google Scholar 

  85. Sun J, Mei H, Wang S, Gao F (2016) Two-Photon Semiconducting Polymer Dots with Dual-Emission for Ratiometric Fluorescent Sensing and Bioimaging of Tyrosinase Activity. Anal Chem 88:7372–7377. https://doi.org/10.1021/acs.analchem.6b01929

    Article  CAS  PubMed  Google Scholar 

  86. Sun J, Chen N, Chen X, Zhang Q, Gao F (2019) Two-Photon Fluorescent Nanoprobe for Glutathione Sensing and Imaging in Living Cells and Zebrafish Using a Semiconducting Polymer Dots Hybrid with Dopamine and β-Cyclodextrin. Anal Chem 91:12414–12421. https://doi.org/10.1021/acs.analchem.9b03010

    Article  CAS  PubMed  Google Scholar 

  87. Nakamura M, Sanji T, Tanaka M (2011) Fluorometric Sensing of Biogenic Amines with Aggregation-Induced Emission-Active Tetraphenylethenes. Chem-Eur J 17:5344–5349. https://doi.org/10.1002/chem.201003285

    Article  CAS  PubMed  Google Scholar 

  88. Lehane L, Olley J (2000) Histamine fish poisoning revisited. Int J Food Microbiol 58:1–37. https://doi.org/10.1016/S0168-1605(00)00296-8

    Article  CAS  PubMed  Google Scholar 

  89. Fücker K, Meyer RA, Pietsch HP (1974) Dünnschichtelektrophoretische Bestimmung biogener Amine in Fisch und Fischprodukten im Zusammenhang mit Lebensmittelintoxikationen. Nahrung 18:663–669. https://doi.org/10.1002/food.19740180612

    Article  PubMed  Google Scholar 

  90. Shalaby AR (1996) Significance of biogenic amines to food safety and human health. Food Res Int 29:675–690. https://doi.org/10.1016/S0963-9969(96)00066-X

    Article  CAS  Google Scholar 

  91. Bauza T, Blaise A, Daumas F, Cabanis JC (1995) Determination of biogenic amines and their precursor amino acids in wines of the Vallée du Rhône by high-performance liquid chromatography with precolumn derivatization and fluorimetric detection. J Chromatogr A 707:373–379. https://doi.org/10.1016/0021-9673(95)00318-H

    Article  CAS  Google Scholar 

  92. Loukou Z, Zotou A (2003) Determination of biogenic amines as dansyl derivatives in alcoholic beverages by high-performance liquid chromatography with fluorimetric detection and characterization of the dansylated amines by liquid chromatography–atmospheric pressure chemical ionization mass pectrometry. J Chromatogr A 996:103–113. https://doi.org/10.1016/S0021-9673(03)00558-2

    Article  CAS  PubMed  Google Scholar 

  93. Önal A (2007) A review: Current analytical methods for the determination of biogenic amines in foods. Food Chem 103:1475–1486. https://doi.org/10.1016/j.foodchem.2006.08.028

    Article  CAS  Google Scholar 

  94. Draisci R, Volpe G, Lucentini L, Cecilia A, Federico R, Palleschi G (1998) Determination of biogenic amines with an electrochemical biosensor and its application to salted anchovies. Food Chem 62:225–232. https://doi.org/10.1016/S0308-8146(97)00167-2

    Article  CAS  Google Scholar 

  95. Sanches-Silva A, Rodrı́guez-Bernaldo de Quirós A, López-Hernández J, Paseiro-Losada P (2004) Comparison between high-performance liquid chromatography and gas chromatography methods for fatty acid identification and quantification in potato crisps. J Chromatogr A 1032:7–15. https://doi.org/10.1016/j.chroma.2003.11.012

    Article  CAS  PubMed  Google Scholar 

  96. Zhong H, Liu C, Ge W, Sun R, Huang F, Wang X (2017) Self-Assembled Conjugated Polymer/Chitosan-graft-Oleic Acid Micelles for Fast Visible Detection of Aliphatic Biogenic Amines by “Turn-On” FRET. ACS Appl Mater Interfaces 9:22875–22884. https://doi.org/10.1021/acsami.7b06168

    Article  CAS  PubMed  Google Scholar 

  97. Li J, Tian C, Yuan Y, Yang Z, Yin C, Jiang R, Song W, Li X, Lu X, Zhang L, Fan Q, Huang W (2015) A Water-Soluble Conjugated Polymer with Pendant Disulfide Linkages to PEG Chains: A Highly Efficient Ratiometric Probe with Solubility-Induced Fluorescence Conversion for Thiol Detection. Macromolecules 48:1017–1025. https://doi.org/10.1021/ma5021775

    Article  CAS  Google Scholar 

  98. Cui Q, Yang Y, Yao C, Liu R, Li L (2016) Aggregation-Induced Energy Transfer of Conjugated Polymer Materials for ATP Sensing. ACS Appl Mater Interfaces 8:35578–35586. https://doi.org/10.1021/acsami.6b12525

    Article  CAS  PubMed  Google Scholar 

  99. Volkow ND, Fowler JS, Wang GJ, Swanson JM (2004) Dopamine in drug abuse and addiction: results from imaging studies and treatment implications. Mol Psychiatry 9:557–569. https://doi.org/10.1038/sj.mp.4001507

    Article  CAS  PubMed  Google Scholar 

  100. Chaudhury D, Walsh JJ, Friedman AK, Juarez B, Ku SM, Koo JW, Ferguson D, Tsai HC, Pomeranz L, Christoffel DJ, Nectow AR, Ekstrand M, Domingos A, Mazei-Robison MS, Mouzon E, Lobo MK, Neve RL, Friedman JM, Russo SJ, Deisseroth K, Nestler EJ, Han MH (2013) Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493:532–536. https://doi.org/10.1038/nature11713

    Article  CAS  PubMed  Google Scholar 

  101. Chen Z, Zhang C, Zhou T, Ma H (2015) Gold nanoparticle based colorimetric probe for dopamine detection based on the interaction between dopamine and melamine. Microchim Acta 182:1003–1008. https://doi.org/10.1007/s00604-014-1417-0

    Article  CAS  Google Scholar 

  102. Kim JH, Auerbach JM, Rodríguez-Gómez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sánchez-Pernaute R, Bankiewicz K, McKay R (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418:50–56. https://doi.org/10.1038/nature00900

    Article  CAS  PubMed  Google Scholar 

  103. Justice JB (1993) Quantitative microdialysis of neurotransmitters. J Neurosci Methods 48:263–276. https://doi.org/10.1016/0165-0270(93)90097-B

    Article  CAS  PubMed  Google Scholar 

  104. Qian CG, Zhu S, Feng PJ, Chen YL, Yu JC, Tang X, Liu Y, Shen QD (2015) Conjugated Polymer Nanoparticles for Fluorescence Imaging and Sensing of Neurotransmitter Dopamine in Living Cells and the Brains of Zebrafish Larvae. ACS Appl Mater Interfaces 7:18581–18589. https://doi.org/10.1021/acsami.5b04987

    Article  CAS  PubMed  Google Scholar 

  105. Koide Y, Urano Y, Hanaoka K, Terai T, Nagano T (2011) Development of an Si-Rhodamine-Based Far-Red to Near-Infrared Fluorescence Probe Selective for Hypochlorous Acid and Its Applications for Biological Imaging. J Am Chem Soc 133:5680–5682. https://doi.org/10.1021/ja111470n

    Article  CAS  PubMed  Google Scholar 

  106. Wang H, Li Y, Chen Y, Li L, Fang T, Tang Z (2015) Development of a conjugated polymer-based fluorescent probe for selective detection of HOCl. J Mater Chem C 3:5136–5140. https://doi.org/10.1039/C5TC00611B

    Article  CAS  Google Scholar 

  107. Muthuraj B, Hussain S, Iyer PK (2013) A rapid and sensitive detection of ferritin at a nanomolar level and disruption of amyloid β fibrils using fluorescent conjugated polymer. Polym Chem 4:5096–5107. https://doi.org/10.1039/C3PY00680H

    Article  CAS  Google Scholar 

  108. Feng L, Guo L, Wang X (2017) Preparation, properties and applications in cell imaging and ions detection of conjugated polymer nanoparticles with alcoxyl bonding fluorene core. Biosens Bioelectron 87:514–521. https://doi.org/10.1016/j.bios.2016.08.114

    Article  CAS  PubMed  Google Scholar 

  109. Gao Z-y, Zhang X, Xing S, Lu Q, Yao J-s, Liu Q-z, Qiao C-d, Xie R-x, Ding B (2019) Conjugated polymer nanoparticles based on carbazole for detecting ferric ion (III) with a large Stokes shift and high sensitivity and the application in cell imaging. Dyes Pigm 168:68–76. https://doi.org/10.1016/j.dyepig.2019.04.030

    Article  CAS  Google Scholar 

  110. Braeken Y, Cheruku S, Ethirajan A, Maes W (2017) Conjugated Polymer Nanoparticles for Bioimaging. Materials 10:1420. https://doi.org/10.3390/ma10121420

    Article  CAS  PubMed Central  Google Scholar 

  111. Li K, Liu B (2014) Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem Soc Rev 43:6570–6597. https://doi.org/10.1039/C4CS00014E

    Article  CAS  PubMed  Google Scholar 

  112. Feng G, Liu J, Liu R, Mao D, Tomczak N, Liu B (2017) Ultrasmall Conjugated Polymer Nanoparticles with High Specificity for Targeted Cancer Cell Imaging. Adv Sci 4:1600407. https://doi.org/10.1002/advs.201600407

    Article  CAS  Google Scholar 

  113. Jiang Y, Cui D, Fang Y, Zhen X, Upputuri PK, Pramanik M, Ding D, Pu K (2017) Amphiphilic semiconducting polymer as multifunctional nanocarrier for fluorescence/photoacoustic imaging guided chemo-photothermal therapy. Biomaterials 145:168–177. https://doi.org/10.1016/j.biomaterials.2017.08.037

    Article  CAS  PubMed  Google Scholar 

  114. Liu J, Li K, Liu B (2015) Far-Red/Near-Infrared Conjugated Polymer Nanoparticles for Long-Term In Situ Monitoring of Liver Tumor Growth. Adv Sci 2:1500008. https://doi.org/10.1002/advs.201500008

    Article  CAS  Google Scholar 

  115. Wang L, Zhao Q, Zhang Z, Lu Z, Zhao Y, Tang Y (2018) Fluorescent Conjugated Polymer/Quarternary Ammonium Salt Co-assembly Nanoparticles: Applications in Highly Effective Antibacteria and Bioimaging. ACS Appl Bio Mater 1:1478–1486. https://doi.org/10.1021/acsabm.8b00422

    Article  CAS  PubMed  Google Scholar 

  116. KoralliNega PDA, Vagiaki LE, Pavlou A, Siskos MG, Dimitrakopoulou-Strauss A, Gregoriou V G, Chochos C L (2020) New conjugated polymer nanoparticles with high photoluminescence quantum yields for far-red and near infrared fluorescence bioimaging. Mater Chem Front 4:2357–2369. https://doi.org/10.1039/D0QM00195C

    Article  Google Scholar 

  117. Li J, Rao J, Pu K (2018) Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials 155:217–235. https://doi.org/10.1016/j.biomaterials.2017.11.025

    Article  CAS  PubMed  Google Scholar 

  118. Xiong L, Shuhendler AJ, Rao J (2012) Self-luminescing BRET-FRET near-infrared dots for in vivo lymph-node mapping and tumour imaging. Nat Commun 3:1193. https://doi.org/10.1038/ncomms2197

    Article  CAS  PubMed  Google Scholar 

  119. Xu Q, Choi MJ, Kim G, Lee SH, Yoon J (2018) Development of a Selective Fluorescent Probe for Hypochlorous Acid Detection and Imaging. Bull Korean Chem Soc 39:1355–1356. https://doi.org/10.1002/bkcs.11614

    Article  CAS  Google Scholar 

  120. Feng L, Liu L, Lv F, Bazan GC, Wang S (2014) Preparation and Biofunctionalization of Multicolor Conjugated Polymer Nanoparticles for Imaging and Detection of Tumor Cells. Adv Mater 26:3926–3930. https://doi.org/10.1002/adma.201305206

    Article  CAS  PubMed  Google Scholar 

  121. Morin JF, Leclerc M (2002) 2,7-Carbazole-Based Conjugated Polymers for Blue, Green, and Red Light Emission. Macromolecules 35:8413–8417. https://doi.org/10.1021/ma020880x

    Article  CAS  Google Scholar 

  122. Feng X, Yang G, Liu L, Lv F, Yang Q, Wang S, Zhu D (2012) A Convenient Preparation of Multi-Spectral Microparticles by Bacteria-Mediated Assemblies of Conjugated Polymer Nanoparticles for Cell Imaging and Barcoding. Adv Mater 24:637–641. https://doi.org/10.1002/adma.201102026

    Article  CAS  PubMed  Google Scholar 

  123. Li S, Wang X, Hu R, Chen H, Li M, Wang J, Wang Y, Liu L, Lv F, Liang XJ, Wang S (2016) Near-Infrared (NIR)-Absorbing Conjugated Polymer Dots as Highly Effective Photothermal Materials for In Vivo Cancer Therapy. Chem Mater 28:8669–8675. https://doi.org/10.1021/acs.chemmater.6b03738

    Article  CAS  Google Scholar 

  124. Ghani SM, Rezaei B, Jamei HR, Ensafi AA (2020) Preparation and comparison of molecularly imprinted polymer fluorimetric nanoprobe based on polymer dots and carbon quantum dots for determination of acetamiprid using response surface method. Microchim Acta 187:294. https://doi.org/10.1007/s00604-020-04283-x

    Article  CAS  Google Scholar 

  125. Yu J, Wu C, Sahu SP, Fernando LP, Szymanski C, McNeill J (2009) Nanoscale 3D Tracking with Conjugated Polymer Nanoparticles. J Am Chem Soc 131:18410–18414. https://doi.org/10.1021/ja907228q

    Article  CAS  PubMed  Google Scholar 

  126. Chowdhury SR, Mukherjee S, Das S, Patra CR, Iyer PK (2017) Multifunctional (3-in-1) cancer theranostics applications of hydroxyquinoline-appended polyfluorene nanoparticles. Chem Sci 8:7566–7575. https://doi.org/10.1039/C7SC03321D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Koner AL, Krndija D, Hou Q, Sherratt DJ, Howarth M (2013) Hydroxy-Terminated Conjugated Polymer Nanoparticles Have Near-Unity Bright Fraction and Reveal Cholesterol-Dependence of IGF1R Nanodomains. ACS Nano 7:1137–1144. https://doi.org/10.1021/nn3042122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhang Y, Pang L, Ma C, Tu Q, Zhang R, Saeed E, Mahmoud AE, Wang J (2014) Small Molecule-Initiated Light-Activated Semiconducting Polymer Dots: An Integrated Nanoplatform for Targeted Photodynamic Therapy and Imaging of Cancer Cells. Anal Chem 86:3092–3099. https://doi.org/10.1021/ac404201s

    Article  CAS  PubMed  Google Scholar 

  129. Maestro LM, Ramírez-Hernández JE, Bogdan N, Capobianco JA, Vetrone F, Solé JG, Jaque D (2012) Deep tissue bio-imaging using two-photon excited CdTe fluorescent quantum dots working within the biological window. Nanoscale 4:298–302. https://doi.org/10.1039/C1NR11285F

    Article  CAS  PubMed  Google Scholar 

  130. Crosignani V, Jahid S, Dvornikov A, Gratton E (2014) Deep tissue imaging by enhanced photon collection. J Innovative Opt Health Sci 07:1450034. https://doi.org/10.1142/s1793545814500345

    Article  CAS  Google Scholar 

  131. Yi M, Yang S, Peng ZY, Liu CH, Li JS, Zhong WW, Yang R, H WH, (2014) Two-Photon Graphene Oxide/Aptamer Nanosensing Conjugate for In Vitro or In Vivo Molecular Probing. Anal Chem 86:3548–3554. https://doi.org/10.1021/ac5000015

    Article  CAS  PubMed  Google Scholar 

  132. Hong G, Antaris AL, Dai H (2017) Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng 1:0010. https://doi.org/10.1038/s41551-016-0010

    Article  CAS  Google Scholar 

  133. Jin Y, Ye F, Zeigler M, Wu C, Chiu DT (2011) Near-Infrared Fluorescent Dye-Doped Semiconducting Polymer Dots. ACS Nano 5:1468–1475. https://doi.org/10.1021/nn103304m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yuan L, Lin W, Zhao S, Gao W, Chen B, He L, Zhu S (2012) A Unique Approach to Development of Near-Infrared Fluorescent Sensors for in Vivo Imaging. J Am Chem Soc 134:13510–13523. https://doi.org/10.1021/ja305802v

    Article  CAS  PubMed  Google Scholar 

  135. Lv Y, Liu P, Ding H, Wu Y, Yan Y, Liu H, Wang X, Huang F, Zhao Y, Tian Z (2015) Conjugated Polymer-Based Hybrid Nanoparticles with Two-Photon Excitation and Near-Infrared Emission Features for Fluorescence Bioimaging within the Biological Window. ACS Appl Mater Interfaces 7:20640–20648. https://doi.org/10.1021/acsami.5b05150

    Article  CAS  PubMed  Google Scholar 

  136. Wu PJ, Kuo SY, Huang YC, Chen CP, Chan YH (2014) Polydiacetylene-Enclosed Near-Infrared Fluorescent Semiconducting Polymer Dots for Bioimaging and Sensing. Anal Chem 86:4831–4839. https://doi.org/10.1021/ac404237q

    Article  CAS  PubMed  Google Scholar 

  137. Frank RN (2004) Diabetic Retinopathy. N Engl J Med 350:48–58. https://doi.org/10.1056/NEJMra021678

    Article  CAS  PubMed  Google Scholar 

  138. Wang XD, Wolfbeis OS (2014) Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem Soc Rev 43:3666–3761. https://doi.org/10.1039/C4CS00039K

    Article  CAS  PubMed  Google Scholar 

  139. Sakadžić S, Roussakis E, Yaseen MA, Mandeville ET, Srinivasan VJ, Arai K, Ruvinskaya S, Devor A, Lo EH, Vinogradov SA, Boas DA (2010) Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue. Nat Methods 7:755–759. https://doi.org/10.1038/nmeth.1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ma DL, He HZ, Zhong HJ, Lin S, Chan DSH, Wang L, Lee SMY, Leung CH, Wong CY (2014) Visualization of Zn2+ Ions in Live Zebrafish Using a Luminescent Iridium(III) Chemosensor. ACS Appl Mater Interfaces 6:14008–14015. https://doi.org/10.1021/am504369b

    Article  CAS  PubMed  Google Scholar 

  141. Zhao Q, Zhou X, Cao T, Zhang KY, Yang L, Liu S, Liang H, Yang H, Li F, Huang W (2015) Fluorescent/phosphorescent dual-emissive conjugated polymer dots for hypoxia bioimaging. Chem Sci 6:1825–1831. https://doi.org/10.1039/C4SC03062A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. Ca-Cancer J Clin 65:5–29. https://doi.org/10.3322/caac.21254

    Article  PubMed  Google Scholar 

  143. Allaoui R, Bergenfelz C, Mohlin S, Hagerling C, Salari K, Werb Z, Anderson RL, Ethier SP, Jirström K, Påhlman S, Bexell D, Tahin B, Johansson ME, Larsson C, Leandersson K (2016) Cancer-associated fibroblast-secreted CXCL16 attracts monocytes to promote stroma activation in triple-negative breast cancers. Nat Commun 7:13050. https://doi.org/10.1038/ncomms13050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Khaled WT, Choon Lee S, Stingl J, Chen X, Raza Ali H, Rueda OM, Hadi F, Wang J, Yu Y, Chin SF, Stratton M, Futreal A, Jenkins NA, Aparicio S, Copeland NG, Watson CJ, Caldas C, Liu P (2015) BCL11A is a triple-negative breast cancer gene with critical functions in stem and progenitor cells. Nat Commun 6:5987. https://doi.org/10.1038/ncomms6987

    Article  CAS  PubMed  Google Scholar 

  145. Davies C, Pan H, Godwin J, Gray R, Arriagada R, Raina V, Abraham M, Alencar VHM, Badran A, Bonfill X, Bradbury J, Clarke M, Collins R, Davis SR, Delmestri A, Forbes JF, Haddad P, Hou MF, Inbar M, Khaled H, Kielanowska J, Kwan WH, Mathew BS, Mittra I, Müller B, Nicolucci A, Peralta O, Pernas F, Petruzelka L, Pienkowski T, Radhika R, Rajan B, Rubach MT, Tort S, Urrútia G, Valentini M, Wang Y, Peto R (2013) Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet 381:805–816. https://doi.org/10.1016/S0140-6736(12)61963-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Jin G, He R, Liu Q, Dong Y, Lin M, Li W, Xu F (2018) Theranostics of Triple-Negative Breast Cancer Based on Conjugated Polymer Nanoparticles. ACS Appl Mater Interfaces 10:10634–10646. https://doi.org/10.1021/acsami.7b14603

    Article  CAS  PubMed  Google Scholar 

  147. Zhu C, Liu L, Yang Q, Lv F, Wang S (2012) Water-Soluble Conjugated Polymers for Imaging, Diagnosis, and Therapy. Chem Rev 112:4687–4735. https://doi.org/10.1021/cr200263w

    Article  CAS  PubMed  Google Scholar 

  148. Fruehauf JP, Meyskens FL (2007) Reactive Oxygen Species: A Breath of Life or Death? Clin Cancer Res 13:789. https://doi.org/10.1158/1078-0432.CCR-06-2082

    Article  CAS  PubMed  Google Scholar 

  149. Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discovery 12:931–947. https://doi.org/10.1038/nrd4002

    Article  CAS  PubMed  Google Scholar 

  150. Li P, Liu L, Xiao H, Zhang W, Wang L, Tang B (2016) A New Polymer Nanoprobe Based on Chemiluminescence Resonance Energy Transfer for Ultrasensitive Imaging of Intrinsic Superoxide Anion in Mice. J Am Chem Soc 138:2893–2896. https://doi.org/10.1021/jacs.5b11784

    Article  CAS  PubMed  Google Scholar 

  151. Swager TM (1998) The Molecular Wire Approach to Sensory Signal Amplification. Acc Chem Res 31:201–207. https://doi.org/10.1021/ar9600502

    Article  CAS  Google Scholar 

  152. Arias-Ramos N, Ibarra LE, Serrano-Torres M, Yagüe B, Caverzán MD, Chesta CA, Palacios RE, López-Larrubia P (2021) Iron Oxide Incorporated Conjugated Polymer Nanoparticles for Simultaneous Use in Magnetic Resonance and Fluorescent Imaging of Brain Tumors. Pharmaceutics 13:1258. https://doi.org/10.3390/pharmaceutics13081258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Palner M, Pu K, Shao S, Rao J (2015) Semiconducting Polymer Nanoparticles with Persistent Near-Infrared Luminescence for In Vivo Optical Imaging. Angew Chem Int Ed Engl 54:11477–11480. https://doi.org/10.1002/anie.201502736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhang J, Mohsin A, Peng Y, Dai Y, Zhuang Y, Guo M, Zhao P (2021) Sandwich-Type Near-Infrared Conjugated Polymer Nanoparticles for Revealing the Fate of Transplanted Human Umbilical Cord Mesenchymal Stem Cells. ACS Appl Mater Interfaces 13:3512–3520. https://doi.org/10.1021/acsami.0c13815

    Article  CAS  PubMed  Google Scholar 

  155. Song X, Lu X, Sun B, Zhang H, Sun P, Miao H, Fan Q, Huang W (2020) Conjugated Polymer Nanoparticles with Absorption beyond 1000 nm for NIR-II Fluorescence Imaging System Guided NIR-II Photothermal Therapy. ACS Appl Polym Mater 2:4171–4179. https://doi.org/10.1021/acsapm.0c00637

    Article  CAS  Google Scholar 

  156. Ntziachristos V, Razansky D (2010) Molecular Imaging by Means of Multispectral Optoacoustic Tomography (MSOT). Chem Rev 110:2783–2794. https://doi.org/10.1021/cr9002566

    Article  CAS  PubMed  Google Scholar 

  157. Kim C, Favazza C, Wang LV (2010) In Vivo Photoacoustic Tomography of Chemicals: High-Resolution Functional and Molecular Optical Imaging at New Depths. Chem Rev 110:2756–2782. https://doi.org/10.1021/cr900266s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Pu K, Shuhendler AJ, Jokerst JV, Mei J, Gambhir SS, Bao Z, Rao J (2014) Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat Nanotechnol 9:233–239. https://doi.org/10.1038/nnano.2013.302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Gao D, Zhang P, Liu Y, Sheng Z, Chen H, Yuan Z (2018) Protein-modified conjugated polymer nanoparticles with strong near-infrared absorption: a novel nanoplatform to design multifunctional nanoprobes for dual-modal photoacoustic and fluorescence imaging. Nanoscale 10:19742–19748. https://doi.org/10.1039/C8NR06197A

    Article  CAS  PubMed  Google Scholar 

  160. Li X, Kolemen S, Yoon J, Akkaya EU (2017) Activatable Photosensitizers: Agents for Selective Photodynamic Therapy. Adv Funct Mater 27:1604053. https://doi.org/10.1002/adfm.201604053

    Article  CAS  Google Scholar 

  161. Wu W, Mao D, Xu S, Kenry HuF, Li X, Kong D, Liu B (2018) Polymerization-Enhanced Photosensitization. Chem 4:1937–1951. https://doi.org/10.1016/j.chempr.2018.06.003

    Article  CAS  Google Scholar 

  162. Lovell JF, Liu TWB, Chen J, Zheng G (2010) Activatable Photosensitizers for Imaging and Therapy. Chem Rev 110:2839–2857. https://doi.org/10.1021/cr900236h

    Article  CAS  PubMed  Google Scholar 

  163. Cheng L, Wang C, Feng L, Yang K, Liu Z (2014) Functional Nanomaterials for Phototherapies of Cancer. Chem Rev 114:10869–10939. https://doi.org/10.1021/cr400532z

    Article  CAS  PubMed  Google Scholar 

  164. Nomoto T, Fukushima S, Kumagai M, Machitani K, Arnida MY, Oba M, Miyata K, Osada K, Nishiyama N, Kataoka K (2014) Three-layered polyplex micelle as a multifunctional nanocarrier platform for light-induced systemic gene transfer. Nat Commun 5:3545. https://doi.org/10.1038/ncomms4545

    Article  CAS  PubMed  Google Scholar 

  165. Cheng Y, Meyers JD, Broome AM, Kenney ME, Basilion JP, Burda C (2011) Deep Penetration of a PDT Drug into Tumors by Noncovalent Drug-Gold Nanoparticle Conjugates. J Am Chem Soc 133:2583–2591. https://doi.org/10.1021/ja108846h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wang C, Cheng L, Liu Y, Wang X, Ma X, Deng Z, Li Y, Liu Z (2013) Imaging-Guided pH-Sensitive Photodynamic Therapy Using Charge Reversible Upconversion Nanoparticles under Near-Infrared Light. Adv Funct Mater 23:3077–3086. https://doi.org/10.1002/adfm.201202992

    Article  CAS  Google Scholar 

  167. Huang P, Lin J, Wang X, Wang Z, Zhang C, He M, Wang K, Chen F, Li Z, Shen G, Cui D, Chen X (2012) Light-Triggered Theranostics Based on Photosensitizer-Conjugated Carbon Dots for Simultaneous Enhanced-Fluorescence Imaging and Photodynamic Therapy. Adv Mater 24:5104–5110. https://doi.org/10.1002/adma.201200650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Tu HL, Lin YS, Lin HY, Hung Y, Lo LW, Chen YF, Mou CY (2009) In vitro Studies of Functionalized Mesoporous Silica Nanoparticles for Photodynamic Therapy. Adv Mater 21:172–177. https://doi.org/10.1002/adma.200800548

    Article  CAS  Google Scholar 

  169. Coll C, Bernardos A, Martínez-Máñez R, Sancenón F (2013) Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Acc Chem Res 46:339–349. https://doi.org/10.1021/ar3001469

    Article  CAS  PubMed  Google Scholar 

  170. Wang Y, Wang K, Zhao J, Liu X, Bu J, Yan X, Huang R (2013) Multifunctional Mesoporous Silica-Coated Graphene Nanosheet Used for Chemo-Photothermal Synergistic Targeted Therapy of Glioma. J Am Chem Soc 135:4799–4804. https://doi.org/10.1021/ja312221g

    Article  CAS  PubMed  Google Scholar 

  171. Dong K, Liu Z, Li Z, Ren J, Qu X (2013) Hydrophobic Anticancer Drug Delivery by a 980 nm Laser-Driven Photothermal Vehicle for Efficient Synergistic Therapy of Cancer Cells In Vivo. Adv Mater 25:4452–4458. https://doi.org/10.1002/adma.201301232

    Article  CAS  PubMed  Google Scholar 

  172. Zhang Z, Wang L, Wang J, Jiang X, Li X, Hu Z, Ji Y, Wu X, Chen C (2012) Mesoporous Silica-Coated Gold Nanorods as a Light-Mediated Multifunctional Theranostic Platform for Cancer Treatment. Adv Mater 24:1418–1423. https://doi.org/10.1002/adma.201104714

    Article  CAS  PubMed  Google Scholar 

  173. Wang B, Yuan H, Liu Z, Nie C, Liu L, Lv F, Wang Y, Wang S (2014) Cationic Oligo(p-phenylene vinylene) Materials for Combating Drug Resistance of Cancer Cells by Light Manipulation. Adv Mater 26:5986–5990. https://doi.org/10.1002/adma.201402183

    Article  CAS  PubMed  Google Scholar 

  174. Qian C, Yu J, Chen Y, Hu Q, Xiao X, Sun W, Wang C, Feng P, Shen QD, Gu Z (2016) Light-Activated Hypoxia-Responsive Nanocarriers for Enhanced Anticancer Therapy. Adv Mater 28:3313–3320. https://doi.org/10.1002/adma.201505869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Zhao M, Leggett E, Bourke S, Poursanidou S, Carter-Searjeant S, Po S, Palma do Carmo M, Dailey L A, Manning P, Ryan S G, Urbano L, Green M A, Rakovich A (2021) Theranostic Near-Infrared-Active Conjugated Polymer Nanoparticles. ACS Nano 15:8790–8802. https://doi.org/10.1021/acsnano.1c01257

    Article  CAS  PubMed  Google Scholar 

  176. Zhou S, Wang Z, Wang Y, Feng L (2020) Near-Infrared Light-Triggered Synergistic Phototherapy for Antimicrobial Therapy. ACS Appl Bio Mater 3:1730–1737. https://doi.org/10.1021/acsabm.0c00034

    Article  CAS  PubMed  Google Scholar 

  177. Zhou S, Yang C, Guo L, Wang Y, Zhang G, Feng L (2019) Water-soluble conjugated polymer with near-infrared absorption for synergistic tumor therapy using photothermal and photodynamic activity. Chem Commun 55:8615–8618. https://doi.org/10.1039/C9CC03744F

    Article  CAS  Google Scholar 

  178. Li J, Yu X, Jiang Y, He S, Zhang Y, Luo Y, Pu K (2021) Second Near-Infrared Photothermal Semiconducting Polymer Nanoadjuvant for Enhanced Cancer Immunotherapy. Adv Mater 33:2003458. https://doi.org/10.1002/adma.202003458

    Article  CAS  Google Scholar 

  179. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. J Am Chem Soc 128:2115–2120. https://doi.org/10.1021/ja057254a

    Article  CAS  PubMed  Google Scholar 

  180. Chen Q, Liang C, Wang X, He J, Li Y, Liu Z (2014) An albumin-based theranostic nano-agent for dual-modal imaging guided photothermal therapy to inhibit lymphatic metastasis of cancer post surgery. Biomaterials 35:9355–9362. https://doi.org/10.1016/j.biomaterials.2014.07.062

    Article  CAS  PubMed  Google Scholar 

  181. Song X, Zhang R, Liang C, Chen Q, Gong H, Liu Z (2015) Nano-assemblies of J-aggregates based on a NIR dye as a multifunctional drug carrier for combination cancer therapy. Biomaterials 57:84–92. https://doi.org/10.1016/j.biomaterials.2015.04.001

    Article  CAS  PubMed  Google Scholar 

  182. Jiang BP, Zhang L, Zhu Y, Shen XC, Ji SC, Tan XY, Cheng L, Liang H (2015) Water-soluble hyaluronic acid–hybridized polyaniline nanoparticles for effectively targeted photothermal therapy. J Mater Chem B 3:3767–3776. https://doi.org/10.1039/C4TB01738B

    Article  CAS  PubMed  Google Scholar 

  183. Su Z, Yang C, Xu C, Wu H, Zhang Z, Liu T, Zhang C, Yang Q, Li B, Kang F (2013) Co-electro-deposition of the MnO2–PEDOT:PSS nanostructured composite for high areal mass, flexible asymmetric supercapacitor devices. J Mater Chem A 1:12432–12440. https://doi.org/10.1039/C3TA13148C

    Article  CAS  Google Scholar 

  184. Sun H, Lv F, Liu L, Gu Q, Wang S (2018) Conjugated Polymer Materials for Photothermal Therapy. Adv Ther 1:1800057. https://doi.org/10.1002/adtp.201800057

    Article  CAS  Google Scholar 

  185. Roper DK, Ahn W, Hoepfner M (2007) Microscale Heat Transfer Transduced by Surface Plasmon Resonant Gold Nanoparticles. J Phys Chem C 111:3636–3641. https://doi.org/10.1021/jp064341w

    Article  CAS  Google Scholar 

  186. Xu L, Cheng L, Wang C, Peng R, Liu Z (2014) Conjugated polymers for photothermal therapy of cancer. Polym Chem 5:1573–1580. https://doi.org/10.1039/C3PY01196H

    Article  CAS  Google Scholar 

  187. Guo B, Feng G, Manghnani PN, Cai X, Liu J, Wu W, Xu S, Cheng X, Teh C, Liu B (2016) A Porphyrin-Based Conjugated Polymer for Highly Efficient In Vitro and In Vivo Photothermal Therapy. Small 12:6243–6254. https://doi.org/10.1002/smll.201602293

    Article  CAS  PubMed  Google Scholar 

  188. Yi X, Yang K, Liang C, Zhong X, Ning P, Song G, Wang D, Ge C, Chen C, Chai Z, Liu Z (2015) Imaging-Guided Combined Photothermal and Radiotherapy to Treat Subcutaneous and Metastatic Tumors Using Iodine-131-Doped Copper Sulfide Nanoparticles. Adv Funct Mater 25:4689–4699. https://doi.org/10.1002/adfm.201502003

    Article  CAS  Google Scholar 

  189. Zhou M, Chen Y, Adachi M, Wen X, Erwin B, Mawlawi O, Lai SY, Li C (2015) Single agent nanoparticle for radiotherapy and radio-photothermal therapy in anaplastic thyroid cancer. Biomaterials 57:41–49. https://doi.org/10.1016/j.biomaterials.2015.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Yong Y, Cheng X, Bao T, Zu M, Yan L, Yin W, Ge C, Wang D, Gu Z, Zhao Y (2015) Tungsten Sulfide Quantum Dots as Multifunctional Nanotheranostics for In Vivo Dual-Modal Image-Guided Photothermal/Radiotherapy Synergistic Therapy. ACS Nano 9:12451–12463. https://doi.org/10.1021/acsnano.5b05825

    Article  CAS  PubMed  Google Scholar 

  191. Guo B, Sheng Z, Hu D, Li A, Xu S, Manghnani PN, Liu C, Guo L, Zheng H, Liu B (2017) Molecular Engineering of Conjugated Polymers for Biocompatible Organic Nanoparticles with Highly Efficient Photoacoustic and Photothermal Performance in Cancer Theranostics. ACS Nano 11:10124–10134. https://doi.org/10.1021/acsnano.7b04685

    Article  CAS  PubMed  Google Scholar 

  192. Wang Y, Li S, Zhang P, Bai H, Feng L, Lv F, Liu L, Wang S (2018) Photothermal-Responsive Conjugated Polymer Nanoparticles for Remote Control of Gene Expression in Living Cells. Adv Mater 30:1705418. https://doi.org/10.1002/adma.201705418

    Article  CAS  Google Scholar 

  193. Geng J, Sun C, Liu J, Liao LD, Yuan Y, Thakor N, Wang J, Liu B (2015) Biocompatible Conjugated Polymer Nanoparticles for Efficient Photothermal Tumor Therapy. Small 11:1603–1610. https://doi.org/10.1002/smll.201402092

    Article  CAS  PubMed  Google Scholar 

  194. Zhen X, Xie C, Pu K (2018) Temperature-Correlated Afterglow of a Semiconducting Polymer Nanococktail for Imaging-Guided Photothermal Therapy. Angew Chem Int Ed 57:3938–3942. https://doi.org/10.1002/anie.201712550

    Article  CAS  Google Scholar 

  195. Sun T, Han J, Liu S, Wang X, Wang ZY, Xie Z (2019) Tailor-Made Semiconducting Polymers for Second Near-Infrared Photothermal Therapy of Orthotopic Liver Cancer. ACS Nano 13:7345–7354. https://doi.org/10.1021/acsnano.9b03910

    Article  CAS  PubMed  Google Scholar 

  196. Sun T, Dou JH, Liu S, Wang X, Zheng X, Wang Y, Pei J, Xie Z (2018) Second Near-Infrared Conjugated Polymer Nanoparticles for Photoacoustic Imaging and Photothermal Therapy. ACS Appl Mater Interfaces 10:7919–7926. https://doi.org/10.1021/acsami.8b01458

    Article  CAS  PubMed  Google Scholar 

  197. Cao Y, Dou JH, Zhao NJ, Zhang S, Zheng YQ, Zhang JP, Wang JY, Pei J, Wang Y (2017) Highly Efficient NIR-II Photothermal Conversion Based on an Organic Conjugated Polymer. Chem Mater 29:718–725. https://doi.org/10.1021/acs.chemmater.6b04405

    Article  CAS  Google Scholar 

  198. Xu C, Pu K (2021) Second near-infrared photothermal materials for combinational nanotheranostics. Chem Soc Rev 50:1111–1137. https://doi.org/10.1039/D0CS00664E

    Article  CAS  PubMed  Google Scholar 

  199. Wei Z, Zhu B, Cai Y, Yan D, Lou Y, Guo Z, Deng P (2020) Near-Infrared-Absorbing Diketopyrrolopyrrole-Based Semiconducting Polymer Nanoparticles for Photothermal Therapy. Part Part Syst Charact 37:1900433. https://doi.org/10.1002/ppsc.201900433

    Article  CAS  Google Scholar 

  200. Cheng X, Sun R, Yin L, Chai Z, Shi H, Gao M (2017) Light-Triggered Assembly of Gold Nanoparticles for Photothermal Therapy and Photoacoustic Imaging of Tumors In Vivo. Adv Mater 29:1604894. https://doi.org/10.1002/adma.201604894

    Article  CAS  Google Scholar 

  201. Smith AM, Mancini MC, Nie S (2009) Second window for in vivo imaging. Nat Nanotechnol 4:710–711. https://doi.org/10.1038/nnano.2009.326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Feng X, Lv F, Liu L, Tang H, Xing C, Yang Q, Wang S (2010) Conjugated Polymer Nanoparticles for Drug Delivery and Imaging. ACS Appl Mater Interfaces 2:2429–2435. https://doi.org/10.1021/am100435k

    Article  CAS  PubMed  Google Scholar 

  203. Lee MH, Thomas JL, Chen YC, Chin WT, Lin HY (2013) The complete replacement of antibodies by protein-imprinted poly (ethylene-co-vinyl alcohol) in sandwich fluoroimmunoassays. Microchim Acta 180:1393–1399. https://doi.org/10.1007/s00604-013-0995-6

    Article  CAS  Google Scholar 

  204. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760. https://doi.org/10.1038/nnano.2007.387

    Article  CAS  PubMed  Google Scholar 

  205. Xu X, Liu R, Li L (2015) Nanoparticles made of π-conjugated compounds targeted for chemical and biological applications. Chem Commun 51:16733–16749. https://doi.org/10.1039/C5CC06439B

    Article  CAS  Google Scholar 

  206. Elsabahy M, Heo GS, Lim SM, Sun G, Wooley KL (2015) Polymeric Nanostructures for Imaging and Therapy. Chem Rev 115:10967–11011. https://doi.org/10.1021/acs.chemrev.5b00135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Senthilkumar T, Zhou L, Gu Q, Liu L, Lv F, Wang S (2018) Conjugated Polymer Nanoparticles with Appended Photo-Responsive Units for Controlled Drug Delivery, Release, and Imaging. Angew Chem Int Ed 57:13114–13119. https://doi.org/10.1002/anie.201807158

    Article  CAS  Google Scholar 

  208. Lu Z, Zhang Z, Tang Y (2019) Conjugated Polymers-Based Thermal-Responsive Nanoparticles for Controlled Drug Delivery, Tracking, and Synergistic Photodynamic Therapy/Chemotherapy. ACS Appl Bio Mater 2:4485–4492. https://doi.org/10.1021/acsabm.9b00640

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Financial support from National Natural Science Foundation of China (Nos. 21305107, 81701830), the Natural Science Foundation of Shaanxi Province (Nos. 2020JM-066, 2020JQ-019), the Fundamental Research Funds for the Central Universities (Nos. xjh012020001, xjj2017028) and China Postdoctoral Science Foundation (No. 2020M673368) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sameer Hussain or Ruixia Gao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Hussain, S., Abbas, A. et al. Conjugated polymer nanoparticles and their nanohybrids as smart photoluminescent and photoresponsive material for biosensing, imaging, and theranostics. Microchim Acta 189, 83 (2022). https://doi.org/10.1007/s00604-021-05153-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05153-w

Keywords

Navigation