Skip to main content
Log in

Bioconjugates of mercaptocarboxylic acids functionalized AuNP and superoxide dismutase for superoxide electrochemical monitoring

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The use of gold nanoparticles/superoxide dismutase (AuNP/SOD) bioconjugates is described as building blocks in SOD biosensor development for the quantification of superoxide in cell culture media. AuNP functionalization with 11-mercaptoundecanoic acid (MUA) and 4-mercaptobenzoic acid (MBA) (AuNPMUA and AuNPMBA) was used to improve SOD immobilization through EDC/NHS coupling using their –COOH terminus, leading to the formation of more stable bioconjugates. AuNP and AuNP/SOD bioconjugates were characterized by SEM to determine their size and morphology, UV–Vis for optical properties, FT-IR, and Raman spectroscopies for chemical functional group analysis and EDX for elemental analysis. Electrochemical methods were used to characterize the Au/AuNP-modified electrodes. For the optimization of the biosensor architecture, different AuNP/enzyme bioconjugates were prepared by varying the amount of both enzyme and AuNP, as well as their incubation time. Finally, the biosensors incorporating the bioconjugates were characterized by fixed potential amperometry and voltammetric analysis in order to establish the enzymatic mechanism and to elucidate the best biosensor architecture for monitoring superoxide in cell culture media. The best sensitivity value for superoxide detection corresponded to 41.2 nA µM cm−2, achieved by a biosensor based on AuNPMBA/SOD bioconjugates monitored through fixed potential amperometry at 0.3 V vs. Ag/AgCl, with a limit of detection of 1.0 µM, and overall very good operational stability, maintaining 91% of the initial sensitivity after 30 days. Finally, the optimized biosensor was employed for the quantification of successive additions of superoxide in cell culture media, with excellent recovery values.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kucherenko IS, Soldatkin OO, Kucherenko DY, Soldatkina OV, Dzyadevych SV (2019) Advances in nanomaterial application in enzyme-based electrochemical biosensors: a review. Nanoscale Adv 1:4560–4577. https://doi.org/10.1039/C9NA00491B

    Article  CAS  Google Scholar 

  2. Barsan MM, Brett CMA (2016) Recent advances in layer-by-layer strategies for biosensors incorporating metal nanoparticles. TrAC - Trends Anal Chem 79:286–296. https://doi.org/10.1016/j.trac.2015.11.019

    Article  CAS  Google Scholar 

  3. Mori S, Kitta Y, Sakamoto H, Takamura E, Suye S. i (2021) Electrochemical characteristics of a gold nanoparticle-modified controlled enzyme–electrode contact junction electrode. Biotechnol Lett 43:1037–1042. https://doi.org/10.1007/S10529-021-03092-3

    Article  CAS  PubMed  Google Scholar 

  4. Ramsey AV, Bischoff AJ, Francis MB (2021) Enzyme activated gold nanoparticles for versatile site-selective bioconjugation. J Am Chem Soc 143:7342–7350. https://doi.org/10.1021/JACS.0C11678/ASSET/IMAGES/LARGE/JA0C11678_0005.JPEG

    Article  CAS  PubMed  Google Scholar 

  5. Milton RD, Minteer SD (2017) Direct enzymatic bioelectrocatalysis: differentiating between myth and reality. J R Soc Interface 14(131):20170253. https://doi.org/10.1098/RSIF.2017.0253

    Article  PubMed  PubMed Central  Google Scholar 

  6. Baslé E, Joubert N, Pucheault M (2010) Protein Chemical Modification on Endogenous Amino Acids. Chem Biol 17:213–227. https://doi.org/10.1016/J.CHEMBIOL.2010.02.008

    Article  PubMed  Google Scholar 

  7. Liu S, Lämmerhofer M (2019) Functionalized gold nanoparticles for sample preparation: a review. Electrophoresis. 40:2438–2461. https://doi.org/10.1002/ELPS.201900111

    Article  CAS  PubMed  Google Scholar 

  8. Busch RT, Karim F, Weis J, Sun Y, Zhao C, Vasquez ES (2019) Optimization and structural stability of gold nanoparticle–antibody bioconjugates. ACS Omega 4:15269–15279. https://doi.org/10.1021/ACSOMEGA.9B02276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bartczak D, Kanaras AG (2011) Preparation of peptide-functionalized gold nanoparticles using one pot EDC/Sulfo-NHS coupling. Langmuir 27:10119–10123. https://doi.org/10.1021/LA2022177

    Article  CAS  PubMed  Google Scholar 

  10. Jazayeri MH, Amani H, Pourfatollah AA, Pazoki-Toroudi H, Sedighimoghaddam B (2016) Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sens Bio-Sensing Res 9:17–22. https://doi.org/10.1016/J.SBSR.2016.04.002

    Article  Google Scholar 

  11. Wangoo N, Bhasin KK, Mehta SK, Suri CR (2008) Synthesis and capping of water-dispersed gold nanoparticles by an amino acid: Bioconjugation and binding studies. J Colloid Interface Sci 323:247–254. https://doi.org/10.1016/J.JCIS.2008.04.043

    Article  CAS  PubMed  Google Scholar 

  12. Schuetze B, Mayer C, Loza K, Gocyla M, Heggen M, Epple M (2016) Conjugation of thiol-terminated molecules to ultrasmall 2 nm-gold nanoparticles leads to remarkably complex 1 H-NMR spectra. J Mater Chem B 4:2179. https://doi.org/10.1039/c5tb02443a

    Article  CAS  PubMed  Google Scholar 

  13. Pillai PP, Huda S, Kowalczyk B, Grzybowski BA (2013) Controlled pH stability and adjustable cellular uptake of mixed-charge nanoparticles. J Am Chem Soc 135:6392–6395. https://doi.org/10.1021/JA4001272

    Article  CAS  PubMed  Google Scholar 

  14. Asif M, Liu H, Aziz A, Wang H, Wang Z, Ajmal M, Xiao F, Liu H (2017) Core-shell iron oxide-layered double hydroxide: high electrochemical sensing performance of H2O2 biomarker in live cancer cells with plasma therapeutics. Biosens Bioelectron 97:352–359. https://doi.org/10.1016/J.BIOS.2017.05.057

    Article  CAS  PubMed  Google Scholar 

  15. Asif M, Haitao W, Shuang D, Aziz A, Zhang G, Xiao F, Liu H (2017) Metal oxide intercalated layered double hydroxide nanosphere: with enhanced electrocatalyic activity towards H2O2 for biological applications. Sensors Actuators B Chem 239:243–252. https://doi.org/10.1016/J.SNB.2016.08.010

    Article  CAS  Google Scholar 

  16. Asif M, Aziz A, Ashraf G, Iftikhar T, Sun Y, Xiao F, Liu H (2022) Unveiling microbiologically influenced corrosion engineering to transfigure damages into benefits: a textile sensor for H2O2 detection in clinical cancer tissues. Chem Eng J 427:131398. https://doi.org/10.1016/J.CEJ.2021.131398

    Article  CAS  Google Scholar 

  17. Sanz CG, Onea M, Aldea A, Barsan MM (2022) Disposable superoxide dismutase biosensors based on gold covered polycaprolactone fibers for the detection of superoxide in cell culture media. Talanta 241:123255. https://doi.org/10.1016/J.TALANTA.2022.123255

    Article  CAS  PubMed  Google Scholar 

  18. Duanghathaipornsuk S, Farrell EJ, Alba-Rubio AC, Zelenay P, Kim DS (2021) Detection technologies for reactive oxygen species: fluorescence and electrochemical methods and their applications. Biosensors. 11(2):30. https://doi.org/10.3390/BIOS11020030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Di Pasqua AJ, Mishler RE, Ship YL, Dabrowiak JC, Asefa T (2009) Preparation of antibody-conjugated gold nanoparticles. Mater Lett 63:1876–1879. https://doi.org/10.1016/J.MATLET.2009.05.070

    Article  Google Scholar 

  20. Chirra HD, Sexton T, Biswal D, Hersh LB, Hilt JZ (2011) Catalase-coupled gold nanoparticles: comparison between the carbodiimide and biotin–streptavidin methods. Acta Biomater 7:2865–2872. https://doi.org/10.1016/J.ACTBIO.2011.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862. https://doi.org/10.1021/CR0680282

    Article  CAS  PubMed  Google Scholar 

  22. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707. https://doi.org/10.1021/JP061667W

    Article  CAS  PubMed  Google Scholar 

  23. Li Z, Sheng W, Liu Q, Li S, Shi Y, Zhang Y, Wang S (2018) Development of a gold nanoparticle enhanced enzyme linked immunosorbent assay based on monoclonal antibodies for the detection of fumonisin B1, B2, and B3 in maize. Anal Methods 10:3506–3513. https://doi.org/10.1039/C8AY01036F

    Article  CAS  Google Scholar 

  24. Marques FC, Oliveira GP, Teixeira RAR, Justo RMS, Neves TBV, Andrade GFS (2018) Characterization of 11-mercaptoundecanoic and 3-mercaptopropionic acids adsorbed on silver by surface-enhanced Raman scattering. Vib Spectrosc 98:139–144. https://doi.org/10.1016/J.VIBSPEC.2018.07.015

    Article  CAS  Google Scholar 

  25. Michota A, Bukowska J (2003) Surface-enhanced Raman scattering (SERS) of 4-mercaptobenzoic acid on silver and gold substrates. J Raman Spectrosc 34:21–25. https://doi.org/10.1002/JRS.928

    Article  CAS  Google Scholar 

  26. Ghosh S K, Nath S, Kundu S, Esumi K, Pal T (2004) Solvent and ligand effects on the localized surface plasmon resonance (LSPR) of gold colloids. J Phys Chem B 108:13963–13971. https://doi.org/10.1021/JP047021Q

    Article  CAS  Google Scholar 

  27. Stevens TE, Pearce CJ, Whitten CN, Grant RP, Monson TC (2017) Self-assembled array of tethered manganese oxide nanoparticles for the next generation of energy storage. Sci Rep 7:39–44. https://doi.org/10.1038/srep44191

    Article  CAS  Google Scholar 

  28. Yang Y, Huang J, Yang X, Quan K, Wang H, Ying L, Xie N, Ou M, Wang K (2016) Aptazyme–gold nanoparticle sensor for amplified molecular probing in living cells. Anal Chem 88:5981–5987. https://doi.org/10.1021/ACS.ANALCHEM.6B00999

    Article  CAS  PubMed  Google Scholar 

  29. Onea M, Bacalum M, Radulescu AL, Raileanu M, Craciun L, Esanu TR, Enache TA (2022) Electrochemical evaluation of proton beam radiation effect on the B16 cell culture. Sci Rep121. 12 (2022) 1–11. https://doi.org/10.1038/s41598-022-06277-6

  30. Koposova E, Shumilova G, Ermolenko Y, Kisner A, Offenhäusser A, Mourzina Y (2015) Direct electrochemistry of cyt c and hydrogen peroxide biosensing on oleylamine- and citrate-stabilized gold nanostructures. Sensors Actuators, B Chem 207:1045–1052. https://doi.org/10.1016/j.snb.2014.07.105

    Article  CAS  Google Scholar 

  31. Zhao R, Liu X, Zhang J, Zhu J, Wong DKY (2015) Enhancing direct electron transfer of glucose oxidase using a gold nanoparticle |titanate nanotube nanocomposite on a biosensor. Electrochim Acta 163:64–70. https://doi.org/10.1016/j.electacta.2015.02.098

    Article  CAS  Google Scholar 

  32. Chen X, Li D, Li G, Luo L, Ullah N, Wei Q, Huang F (2015) Facile fabrication of gold nanoparticle on zein ultrafine fibers and their application for catechol biosensor. Appl Surf Sci 328:444–452. https://doi.org/10.1016/j.apsusc.2014.12.070

    Article  CAS  Google Scholar 

  33. Wang M, Han Y, Liu X, Nie Z, Deng C, Guo M, Yao S (2011) Assembly of layer-by-layer films of superoxide dismutase and gold nanorods: A third generation biosensor for superoxide anion. Sci China Chem 54:1284–1291. https://doi.org/10.1007/s11426-011-4345-4

    Article  CAS  Google Scholar 

  34. Wu L, Zhang X, Chen J (2014) A new third-generation biosensor for superoxide anion based on dendritic gold nanostructure. J Electroanal Chem 726:112–118. https://doi.org/10.1016/j.jelechem.2014.05.016

    Article  CAS  Google Scholar 

  35. Saxena U, Chakraborty M, Goswami P (2011) Covalent immobilization of cholesterol oxidase on self-assembled gold nanoparticles for highly sensitive amperometric detection of cholesterol in real samples. Biosens Bioelectron 26:3037–3043. https://doi.org/10.1016/j.bios.2010.12.009

    Article  CAS  PubMed  Google Scholar 

  36. Koteshwara Reddy K, Vengatajalabathy Gobi K (2012) Activated direct electron transfer of nanoAu bioconjugates of cytochrome c for electrocatalytic detection of trace levels of superoxide dismutase enzyme. Electrochim Acta 78:109–114. https://doi.org/10.1016/j.electacta.2012.05.159

    Article  CAS  Google Scholar 

  37. Liu F, Yu R, Wei H, Wu J, He N, Liu X (2022) Construction of a novel electrochemical sensing platform to investigate the effect of temperature on superoxide anions from cells and superoxide dismutase enzyme activity. Anal Chim Acta 1198:339561. https://doi.org/10.1016/j.aca.2022.339561

    Article  CAS  PubMed  Google Scholar 

  38. Wu C, Cui M, Chen X, Zhai M, Ren J, Yu C, Yu X, Ji X (2018) Electrochemical determination of the superoxide anion radical using a gold nanoparticle poly(3,4-ethylenedioxythiophene) ferrocyanide multiwalled carbon nanotube glassy carbon electrode. Anal Lett 51:1529–1543. https://doi.org/10.1080/00032719.2017.1381107

    Article  CAS  Google Scholar 

  39. Wang B, Kang K, Ji X, Liu Y, Li X, Wang N, Ren J (2018) Enhanced electrocatalytic activity of graphene-gold nanoparticles as a superoxide anion biosensor based on immobilized hemin. Int J Electrochem Sci 13:8481–8495. https://doi.org/10.20964/2018.09.12

Download references

Acknowledgements

The authors thank Dr. George E. Stan for the FT-IR measurements.

Funding

Financial support from the Executive Agency for Higher Education, Research, Development and Innovation Funding (UEFISCDI), Romania, Project code PN-III-P1-1.1-TE-2019–0387 and PN-III-P1-1.1-PD-2019–0100, and Romanian Ministry of Research and Innovation through Operational Programme Competitiveness 2014–2020, Project NANOBIOSURF-SMIS 103528.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madalina M. Barsan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4239 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanz, C.G., Crisan, D.N., Leote, R.J.B. et al. Bioconjugates of mercaptocarboxylic acids functionalized AuNP and superoxide dismutase for superoxide electrochemical monitoring. Microchim Acta 189, 245 (2022). https://doi.org/10.1007/s00604-022-05352-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05352-z

Keywords

Navigation