Skip to main content

Advertisement

Log in

Nanomaterials-based electrochemical sensors for the detection of natural antioxidants in food and biological samples: research progress

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Antioxidants are healthy substances that are beneficial to the human body and exist mainly in natural and synthetic forms. Among many kinds of antioxidants, the natural antioxidants have great applications in many fields such as food chemistry, medical care, and clinical application. In recent years, many efforts have been made for the determination of natural antioxidants. Nano-electrochemical sensors combining electrochemistry and nanotechnology have been widely used in the determination of natural antioxidants due to their unique advantages. Therefore, a large number of nanomaterials such as metal oxide, carbon materials, and conducting polymer have attracted much attention in the field of electrochemical sensors due to their good catalytic effect and stable performance. This review mainly introduces the construction of electrochemical sensors based on different nanomaterials, such as metallic nanomaterials, metal oxide nanomaterials, carbon nanomaterials, metal–organic frameworks, polymer nanomaterials, and other nanocomposites, and their application to the detection of natural antioxidants, including ascorbic acid, phenolic acids, flavonoid, tryptophan, citric acid, and other natural antioxidants. In the end, the limitations of the existing nano-sensing technology, the latest development trend, and the application prospect for various natural antioxidant substances are summarized and analyzed. We expect that this review will be helpful to researchers engaged in electrochemical sensors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 3
Scheme 4
Fig. 8
Fig. 9
Scheme 5
Scheme 6
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

FT-IR:

Fourier-transform infrared spectroscopy

GC:

Gas chromatography

HPLC:

High-performance liquid chromatography

NMR:

Nuclear magnetic resonance

CE:

Capillary electrophoresis

LOD:

Limit of detection

CV:

Cyclic voltammetry

LSV:

Linear sweep voltammetry

DPV:

Differential pulse voltammetry

SWV:

Square wave voltammetry

CA:

Chronoamperometry

AA:

Ascorbic acid

CA:

Caffeic acid

GA:

Gallic acid

CGA:

Chlorogenic acid

FA:

Ferulic acid

PCA:

Protocatechuic acid

RA:

Rosmarinic acid

COA:

Coumaric acid

QU:

Quercetin

CT:

Catechin

Try:

Tryptophan

CIA:

Citric acid

UA:

Uric acid

rGO:

Reduced graphene oxide

SPE:

Screen-printed electrode

GQD:

Graphene quantum dots

CPE:

Carbon paste electrode

APB:

1,3,5-Tris(4-aminophenyl)benzene

DMTP:

2,5-Dimethoxyterephaldehyde

COFs:

Covalent organic frameworks

β-CDs:

β-Cyclodextrin

GCE:

Glassy carbon electrode

Delph:

Delphinidin

g-CN/g-C3N4 :

Graphite-carbon nitride

GPE:

Graphite pencil electrode

CC:

Carbon cloth

PDA:

Polydopamine

DA:

Dopamine

SER:

Serotonin

CNOs:

Carbon nanoonions

MIP:

Molecularly imprinted polymer

GN/GR:

Graphene

GO:

Graphene oxide

AP:

Acetaminophen

ERGO:

Electrochemical reduction graphene oxide

Fc:

Ferrocene

MWCNTs:

Multi-walled carbon nanotubes

SWCNTs:

Single-walled carbon nanotubes

SPCE:

Silkscreen printed carbon electrode

BHT:

Butylated hydroxytoluene

MC:

Mesoporous carbon

Adr:

Adrenaline

5-HT:

Serotonin

PDMS:

Polydimethylsiloxane

CPs:

Conductive polymers

PANI:

Polyaniline

PEDOT:

Poly(3, 4-ethylenedioxythiophene)

PPy:

Polypyrrole

PGE:

Pencil-graphite electrode

PAMAM:

Poly(amido amine)

PNB:

Poly(Nile blue)

AB:

Acetylene black

PVP:

Polyvinyl pyrrolidone

ACOP/PAR:

Paracetamol

PIGE:

Paraffin-impregnated graphite electrode

SV:

Sinusoidal voltage

PoPD:

Poly(o-phenylenediamine)

PMB:

Polymethylene blue

P[DqCrC]:

Poly(dopamine quinone-chromium (III) complex)

MIS:

Molecularly imprinted siloxane

P-ABA:

p-Aminobenzoic acid

ITO:

Indium tin oxide

FTO:

Fluorine doped tin oxide

References

  1. Wang PL, Xie LH, Joseph EA, Li JR, Su XO, Zhou HC (2019) Metal-organic frameworks for food safety. Chem Rev 119:10638–10690. https://doi.org/10.1021/acs.chemrev.9b00257

    Article  CAS  PubMed  Google Scholar 

  2. Zeng Y, Zhu Z, Du D, Lin Y (2016) Nanomaterial-based electrochemical biosensors for food safety. Electroanal Chem 781:147–154. https://doi.org/10.1016/j.jelechem.2016.10.030

    Article  CAS  Google Scholar 

  3. Elhachem M, Cayot P, Abboud M, Louka N, Maroun RG, Bou-Maroun E (2021) The importance of developing electrochemical sensors based on molecularly imprinted polymers for a rapid detection of antioxidants. Antioxidants (Basel) 10:382. https://doi.org/10.3390/antiox10030382

    Article  CAS  Google Scholar 

  4. Curulli A (2020) Nanomaterials in electrochemical sensing area: applications and challenges in food analysis. Molecules 25:5759. https://doi.org/10.3390/molecules25235759

    Article  CAS  PubMed Central  Google Scholar 

  5. Quideau S, Deffieux D, Douat-Casassus C, Pouysegu L (2011) Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Edit 50:586–621. https://doi.org/10.1002/anie.201000044

    Article  CAS  Google Scholar 

  6. Gordon MH (2012) Significance of dietary antioxidants for health. Int J Mol Sci 13:173–179. https://doi.org/10.3390/ijms13010173

    Article  CAS  PubMed  Google Scholar 

  7. Franco R, Navarro G, Martinez-Pinilla E (2019) Antioxidants versus food antioxidant additives and food preservatives. Antioxidants (Basel) 8:542. https://doi.org/10.3390/antiox8110542

    Article  CAS  Google Scholar 

  8. Munteanu IG, Apetrei C (2022) A review on electrochemical sensors and biosensors used in assessing antioxidant activity. Antioxidants (Basel) 11:584. https://doi.org/10.3390/antiox11030584

    Article  CAS  Google Scholar 

  9. Nejadmansouri M, Majdinasab M, Nunes GS, Marty JL (2021) An overview of optical and electrochemical sensors and biosensors for analysis of antioxidants in food during the last 5 years. Sensors (Basel) 21:1176. https://doi.org/10.3390/s21041176

    Article  CAS  Google Scholar 

  10. Choi JR, Yong KW, Choi JY, Cowie AC (2019) Emerging point-of-care technologies for food safety analysis. Sensors (Basel) 19:817. https://doi.org/10.3390/s19040817

    Article  CAS  Google Scholar 

  11. Rhouati A, Majdinasab M, Hayat A (2018) A perspective on non-enzymatic electrochemical nanosensors for direct detection of pesticides. Curr Opin Electroche 11:12–18. https://doi.org/10.1016/j.coelec.2018.06.013

    Article  CAS  Google Scholar 

  12. Joshi A, Kim KH (2020) Recent advances in nanomaterial-based electrochemical detection of antibiotics: challenges and future perspectives. Biosens Bioelectron 153:112046. https://doi.org/10.1016/j.bios.2020.112046

    Article  CAS  PubMed  Google Scholar 

  13. Labib M, Sargent EH, Kelley SO (2016) Electrochemical methods for the analysis of clinically relevant biomolecules. Chem Rev 116:9001–9090. https://doi.org/10.1021/acs.chemrev.6b00220

    Article  CAS  PubMed  Google Scholar 

  14. Granero AM, Fernández H, Zon MA, Robledo SN, Pierini GD, Di Tocco A, Carrillo Palomino RA, Maccio S, Riberi WI, Arévalo FJ (2021) Development of electrochemical sensors/biosensors to detect natural and synthetic compounds related to agroalimentary, environmental and health systems in Argentina. A review of the last decade. Chemosensors 9:294. https://doi.org/10.3390/chemosensors9110294

    Article  CAS  Google Scholar 

  15. Iftikhar T, Asif M, Aziz A, Ashraf G, Jun S, Li G, Liu H (2021) Topical advances in nanomaterials based electrochemical sensors for resorcinol detection. Trends Environ Anal 31:e00138. https://doi.org/10.1016/j.teac.2021.e00138

    Article  CAS  Google Scholar 

  16. Manikandan VS, Adhikari B, Chen A (2018) Nanomaterial based electrochemical sensors for the safety and quality control of food and beverages. Analyst 143:4537–4554. https://doi.org/10.1039/c8an00497h

    Article  CAS  PubMed  Google Scholar 

  17. Chen A, Chatterjee S (2013) Nanomaterials based electrochemical sensors for biomedical applications. Chem Soc Rev 42:5425–5438. https://doi.org/10.1039/c3cs35518g

    Article  CAS  PubMed  Google Scholar 

  18. Gupta R, Raza N, Bhardwaj SK, Vikrant K, Kim KH, Bhardwaj N (2021) Advances in nanomaterial-based electrochemical biosensors for the detection of microbial toxins, pathogenic bacteria in food matrices. J Hazard Mater 401:123379. https://doi.org/10.1016/j.jhazmat.2020.123379

    Article  CAS  PubMed  Google Scholar 

  19. Waheed A, Mansha M, Ullah N (2018) Nanomaterials-based electrochemical detection of heavy metals in water: current status, challenges and future direction. TrAC-Trends Anal Chem 105:37–51. https://doi.org/10.1016/j.trac.2018.04.012

    Article  CAS  Google Scholar 

  20. Abid N, Khan AM, Shujait S, Chaudhary K, Ikram M, Imran M et al (2022) Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: a review. Adv Colloid Interface 300:102597. https://doi.org/10.1016/j.cis.2021.102597

    Article  CAS  Google Scholar 

  21. Amali RKA, Lim HN, Ibrahim I, Huang NM, Zainal Z, Ahmad SAA (2021) Significance of nanomaterials in electrochemical sensors for nitrate detection: a review. Trends Environ Anal 31:e00135. https://doi.org/10.1016/j.teac.2021.e00135

    Article  CAS  Google Scholar 

  22. Garkani Nejad F, Tajik S, Beitollahi H, Sheikhshoaie I (2021) Magnetic nanomaterials based electrochemical (bio)sensors for food analysis. Talanta 228:122075. https://doi.org/10.1016/j.talanta.2020.122075

    Article  CAS  PubMed  Google Scholar 

  23. Elgrishi N, Rountree KJ, McCarthy BD, Rountree ES, Eisenhart TT, Dempsey JL (2017) A practical beginner’s guide to cyclic voltammetry. J Chem Educ 95:197–206. https://doi.org/10.1021/acs.jchemed.7b00361

    Article  CAS  Google Scholar 

  24. Qian L, Durairaj S, Prins S, Chen A (2021) Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosens Bioelectron 175:112836. https://doi.org/10.1016/j.bios.2020.112836

    Article  CAS  PubMed  Google Scholar 

  25. Scott K (2016) Electrochemical principles and characterization of bioelectrochemical systems. Microbial Electrochemical and Fuel Cells 29–66. https://doi.org/10.1016/B978-1-78242-375-1.00002-2

  26. Mirceski V, Skrzypek S, Stojanov L (2018) Square-wave voltammetry. ChemTexts 4:17. https://doi.org/10.1007/s40828-018-0073-0

    Article  Google Scholar 

  27. Ziyatdinova GK, Zhupanova AS, Budnikov HC (2022) Electrochemical sensors for the simultaneous detection of phenolic antioxidants. J Anal Chem 77:155–172. https://doi.org/10.1134/s1061934822020125

    Article  CAS  Google Scholar 

  28. Ahmed J, Faisal M, Harraz FA, Jalalah M, Alsareii SA (2021) Porous silicon-mesoporous carbon nanocomposite based electrochemical sensor for sensitive and selective detection of ascorbic acid in real samples. J Taiwan Inst Chem E 125:360–371. https://doi.org/10.1016/j.jtice.2021.06.018

    Article  CAS  Google Scholar 

  29. Huang D, Li X, Chen M, Chen F, Wan Z, Rui R, Wang R, Fan S, Wu H (2019) An electrochemical sensor based on a porphyrin dye-functionalized multi-walled carbon nanotubes hybrid for the sensitive determination of ascorbic acid. Electroanal Chem 841:101–106. https://doi.org/10.1016/j.jelechem.2019.04.041

    Article  CAS  Google Scholar 

  30. Wang J, Yang B, Gao F, Song P, Li L, Zhang Y, Lu C, Goh MC, Du Y (2019) Ultra-stable electrochemical sensor for detection of caffeic acid based on platinum and nickel jagged-like nanowires. Nanoscale Res Lett 14:11. https://doi.org/10.1186/s11671-018-2839-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Velmurugan M (2017) Determination of caffeic acid in wine samples based on the electrochemical reduction of graphene oxide modified screen printed carbon electrode. Int J Electrochem Sc 4173–4182. https://doi.org/10.20964/2017.05.01

  32. Albu C, Eremia SAV, Veca ML, Avram A, Popa RC, Pachiu C, Romanitan C, Kusko M, Gavrila R, Radoi A (2019) Nano-crystalline graphite film on SiO2: Electrochemistry and electro-analytical application. Electrochim Acta 303:284–292. https://doi.org/10.1016/j.electacta.2019.02.093

    Article  CAS  Google Scholar 

  33. Vilian ATE, Song JY, Lee YS, Hwang SK, Kim HJ, Jun YS, Huh YS, Han YK (2018) Salt-templated three-dimensional porous carbon for electrochemical determination of gallic acid. Biosens Bioelectron 117:597–604. https://doi.org/10.1016/j.bios.2018.06.064

    Article  CAS  PubMed  Google Scholar 

  34. Valery HG, Chtaini A, Loura B (2019) Voltammetric sensor based on electrodes modified by poly(vinyl alcohol)-natural clay film, for the detection of gallic acid. Port Electrochim Acta 37:327–333. https://doi.org/10.4152/pea.201905327

    Article  CAS  Google Scholar 

  35. Raja N (2017) Amperometric detection of gallic acid based on electrochemically activated screen printed carbon electrode. Int J Electrochem Sc 4620–4629. https://doi.org/10.20964/2017.06.22

  36. Zhang T, Liu M, Zhang Q, Wang Y, Kong X, Wang L et al (2017) Sensitive determination of chlorogenic acid in pharmaceutical products based on the decoration of 3D macroporous carbon with Au nanoparticles via polyoxometalates. Analyst 142:2603–2609. https://doi.org/10.1039/c7an00493a

    Article  CAS  PubMed  Google Scholar 

  37. Li W, Deng X, Wu Z, Zhang L, Jiao J (2022) An electrochemical sensor for quantitation of the oral health care agent chlorogenic acid based on bimetallic nanowires with functionalized reduced graphene oxide nanohybrids. ACS Omega 7:4614–4623. https://doi.org/10.1021/acsomega.1c06612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Munteanu IG, Apetrei C (2021) A review on electrochemical sensors and biosensors used in chlorogenic acid electroanalysis. Int J Mol Sci 22:13138. https://doi.org/10.3390/ijms222313138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Murugesan D, Amir H, Ponpandian N, Viswanathan C (2021) Development of RF magnetron-sputtered molybdenum oxide-modified carbon cloth thin film as a ferulic acid sensor. Appl Phys A 127:805. https://doi.org/10.1007/s00339-021-04859-1

    Article  CAS  Google Scholar 

  40. Zhang Y, Liu Y, Yang Z, Yang Y, Pang P, Gao Y et al (2013) Rapid electrochemical detection of ferulic acid based on a graphene modified glass carbon electrode. Anal Methods-UK 5:3834. https://doi.org/10.1039/c3ay40084k

    Article  CAS  Google Scholar 

  41. Liu L, Gou Y, Gao X, Zhang P, Chen W, Feng S et al (2014) Electrochemically reduced graphene oxide-based electrochemical sensor for the sensitive determination of ferulic acid in A. sinensis and biological samples. Mater Sci Eng C-Mater 42:227–233. https://doi.org/10.1016/j.msec.2014.05.045

    Article  CAS  Google Scholar 

  42. Antony FM, Wasewar K (2020) Reactive extraction: a promising approach to separate protocatechuic acid. Environ Sci Pollut R 27:27345–27357. https://doi.org/10.1007/s11356-019-06094-x

    Article  CAS  Google Scholar 

  43. Song J, He Y, Luo C, Feng B, Ran F, Xu H et al (2020) New progress in the pharmacology of protocatechuic acid: a compound ingested in daily foods and herbs frequently and heavily. Pharmacol Res 161:105109. https://doi.org/10.1016/j.phrs.2020.105109

    Article  CAS  PubMed  Google Scholar 

  44. Zhu S, Yang Y, Chen K, Su Z, Wang J, Li S et al (2022) Novel cubic gravel-like EDAPbCl4@ZIF-67 as electrochemical sensor for the detection of protocatechuic acid. J Alloy Compd 903:163946. https://doi.org/10.1016/j.jallcom.2022.163946

    Article  CAS  Google Scholar 

  45. Ribeiro JA, Fernandes PMV, Pereira CM, Silva F (2016) Electrochemical sensors and biosensors for determination of catecholamine neurotransmitters: a review. Talanta 160:653–679. https://doi.org/10.1016/j.talanta.2016.06.066

    Article  CAS  PubMed  Google Scholar 

  46. Alipour S, Azar PA, Husain SW, Rajabi HR (2020) Determination of rosmarinic acid in plant extracts using a modified sensor based on magnetic imprinted polymeric nanostructures. Sensor Actuat B-Chem 323:128668. https://doi.org/10.1016/j.snb.2020.128668

    Article  CAS  Google Scholar 

  47. Şenocak A (2020) Fast, simple and sensitive determination of coumaric acid in fruit juice samples by magnetite nanoparticles-zeolitic imidazolate framework material. Electroanal 32:2330–2339. https://doi.org/10.1002/elan.202060237

    Article  CAS  Google Scholar 

  48. Li J, Qu J, Yang R, Qu L, de B. Harrington P (2016) A sensitive and selective electrochemical sensor based on graphene quantum dot/gold nanoparticle nanocomposite modified electrode for the determination of quercetin in biological samples. Electroanal 28:1322–1330. https://doi.org/10.1002/elan.201500490

    Article  CAS  Google Scholar 

  49. Liu Y, Fan J, He F, Li X, Tang T, Cheng H et al (2021) Glycosyl/MOF-5-based carbon nanofibers for highly sensitive detection of anti-bacterial drug quercetin. Surf Interfaces 27:101488. https://doi.org/10.1016/j.surfin.2021.101488

    Article  CAS  Google Scholar 

  50. Nasrollahi S, Ghoreishi SM, Khoobi A (2020) Nanoporous gold film: surfactant-assisted synthesis, anodic oxidation and sensing application in electrochemical determination of quercetin. Electroanal Chem 864:114097. https://doi.org/10.1016/j.jelechem.2020.114097

    Article  CAS  Google Scholar 

  51. Liu JG, Wan JZ, Lin QM, Han GC, Feng XZ, Chen Z (2021) Convenient heme nanorod modified electrode for quercetin sensing by two common electrochemical methods. Micromachines (Basel) 12:1519. https://doi.org/10.3390/mi12121519

    Article  CAS  Google Scholar 

  52. Şenocak A, Basova T, Demirbas E, Durmuş M (2019) Direct and fast electrochemical determination of catechin in tea extracts using SWCNT-subphthalocyanine hybrid material. Electroanal 31:1697–1707. https://doi.org/10.1002/elan.201900214

    Article  CAS  Google Scholar 

  53. Fu Y, You Z, Xiao A, Liu L (2021) Magnetic molecularly imprinting polymers, reduced graphene oxide, and zeolitic imidazolate frameworks modified electrochemical sensor for the selective and sensitive detection of catechin. Microchim Acta 188:71. https://doi.org/10.1007/s00604-021-04724-1

    Article  CAS  Google Scholar 

  54. Duran ST, Ayhan N, Aksoy B, Köytepe S, Paşahan A (2019) Preparation of triaminotriazine-based polyimide-modified electrodes and their use for selective detection of catechin in green tea samples. Polym Bull 77:5065–5082. https://doi.org/10.1007/s00289-019-03005-5

    Article  CAS  Google Scholar 

  55. Wang L, Yang R, Li J, Qu L, Harrington PB (2019) A highly selective and sensitive electrochemical sensor for tryptophan based on the excellent surface adsorption and electrochemical properties of PSS functionalized graphene. Talanta 196:309–316. https://doi.org/10.1016/j.talanta.2018.12.058

    Article  CAS  PubMed  Google Scholar 

  56. N L, C S, (2019) SnO2-SnS2 nanocomposite as electrocatalyst for simultaneous determination of depression biomarkers serotonin and tryptophan. Electroanal Chem 840:1–9. https://doi.org/10.1016/j.jelechem.2019.03.046

    Article  CAS  Google Scholar 

  57. Wang C, Li T, Liu Z, Guo Y, Li C, Dong C, Shuang S (2016) An ultra-sensitive sensor based on β-cyclodextrin modified magnetic graphene oxide for detection of tryptophan. Electroanal Chem 781:363–370. https://doi.org/10.1016/j.jelechem.2016.07.028

    Article  CAS  Google Scholar 

  58. Anithaa AC, Mayil Vealan SB, C S, (2021) Enhancement of electrocatalytic activity in tungsten trioxide nanoparticles by UV-light irradiation: application for simultaneous detection of tyrosine and tryptophan. Sensor Actuat A-Phys 331:113011. https://doi.org/10.1016/j.sna.2021.113011

    Article  CAS  Google Scholar 

  59. Wang Y, Ouyang X, Ding Y, Liu B, Xu D, Liao L (2016) An electrochemical sensor for determination of tryptophan in the presence of DA based on poly(l-methionine)/graphene modified electrode. RSC Adv 6:10662–10669. https://doi.org/10.1039/c5ra24116b

    Article  CAS  Google Scholar 

  60. He Q, Tian Y, Wu Y, Liu J, Li G, Deng P, Chen D (2019) Electrochemical sensor for rapid and sensitive detection of tryptophan by a Cu2O nanoparticles-coated reduced graphene oxide nanocomposite. Biomolecules 9:176. https://doi.org/10.3390/biom9050176

    Article  CAS  PubMed Central  Google Scholar 

  61. Liu X, Zhang J, Di J, Long Y, Li W, Tu Y (2017) Graphene-like carbon nitride nanosheet as a novel sensing platform for electrochemical determination of tryptophan. J Colloid Interface Sci 505:964–972. https://doi.org/10.1016/j.jcis.2017.05.119

    Article  CAS  PubMed  Google Scholar 

  62. Valizadeh H, Tashkhourian J, Abbaspour A (2019) A carbon paste electrode modified with a metal-organic framework of type MIL-101(Fe) for voltammetric determination of citric acid. Microchim Acta 186:455. https://doi.org/10.1007/s00604-019-3585-4

    Article  CAS  Google Scholar 

  63. do Nascimento RF, Selva TM, Ribeiro WF, Belian MF, Angnes L, do Nascimento VB, (2013) Flow-injection electrochemical determination of citric acid using a cobalt(II)-phthalocyanine modified carbon paste electrode. Talanta 105:354–359. https://doi.org/10.1016/j.talanta.2012.10.055

    Article  CAS  PubMed  Google Scholar 

  64. Murinzi TW, Clement TA, Chitsa V, Mehlana G (2018) Copper oxide nanoparticles encapsulated in HKUST-1 metal-organic framework for electrocatalytic oxidation of citric acid. J Solid State Chem 268:198–206. https://doi.org/10.1016/j.jssc.2018.09.003

    Article  CAS  Google Scholar 

  65. Rashmi HB, Negi PS (2020) Phenolic acids from vegetables: a review on processing stability and health benefits. Food Res Int 136:109298. https://doi.org/10.1016/j.foodres.2020.109298

    Article  CAS  PubMed  Google Scholar 

  66. Amini SM, Akbari A (2019) Metal nanoparticles synthesis through natural phenolic acids. IET Nanobiotechnol 13:771–777. https://doi.org/10.1049/iet-nbt.2018.5386

    Article  PubMed  PubMed Central  Google Scholar 

  67. Pei R, Liu X, Bolling B (2020) Flavonoids and gut health. Curr Opin Biotech 61:153–159. https://doi.org/10.1016/j.copbio.2019.12.018

    Article  CAS  PubMed  Google Scholar 

  68. Sanchez M, Romero M, Gomez-Guzman M, Tamargo J, Perez-Vizcaino F, Duarte J (2019) Cardiovascular effects of flavonoids. Curr Med Chem 26:6991–7034. https://doi.org/10.2174/0929867326666181220094721

    Article  CAS  PubMed  Google Scholar 

  69. Bahmanzadeh S, Noroozifar M (2018) Fabrication of modified carbon paste electrodes with Ni-doped Lewatit FO36 nano ion exchange resin for simultaneous determination of epinephrine, paracetamol and tryptophan. Electroanal Chem 809:153–162. https://doi.org/10.1016/j.jelechem.2017.11.073

    Article  CAS  Google Scholar 

  70. Tang Y, Cheng W (2013) Nanoparticle-modified electrode with size- and shape-dependent electrocatalytic activities. Langmuir 29:3125–3132. https://doi.org/10.1021/la304616k

    Article  CAS  PubMed  Google Scholar 

  71. Kempahanumakkagari S, Deep A, Kim KH, Kumar Kailasa S, Yoon HO (2017) Nanomaterial-based electrochemical sensors for arsenic – a review. Biosens Bioelectron 95:106–116. https://doi.org/10.1016/j.bios.2017.04.013

    Article  CAS  PubMed  Google Scholar 

  72. Aragay G, Pons J, Merkoci A (2011) Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem Rev 111:3433–3458. https://doi.org/10.1021/cr100383r

    Article  CAS  PubMed  Google Scholar 

  73. Maduraiveeran G, Jin W (2017) Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications. Trends Environ Anal 13:10–23. https://doi.org/10.1016/j.teac.2017.02.001

    Article  CAS  Google Scholar 

  74. Yang Z, Zhou X, Yin Y, Fang W (2021) Determination of nitrite by noble metal nanomaterial-based electrochemical sensors: a minireview. Anal Lett 54:2826–2850. https://doi.org/10.1080/00032719.2021.1897134

    Article  CAS  Google Scholar 

  75. Sivasankaran U, Thomas A, Jose AR, Kumar KG (2017) Poly (bromophenol blue)-gold nanoparticle composite: an efficient electrochemical sensing platform for uric acid. J Electrochem Soc 164:B292–B297. https://doi.org/10.1149/2.0181707jes

    Article  CAS  Google Scholar 

  76. Mazzara F, Patella B, Aiello G, O’Riordan A, Torino C, Vilasi A et al (2021) Electrochemical detection of uric acid and ascorbic acid using r-GO/NPs based sensors. Electrochim Acta 388:138652. https://doi.org/10.1016/j.electacta.2021.138652

    Article  CAS  Google Scholar 

  77. Nazarpour S, Hajian R, Sabzvari MH (2020) A novel nanocomposite electrochemical sensor based on green synthesis of reduced graphene oxide/gold nanoparticles modified screen printed electrode for determination of tryptophan using response surface methodology approach. Microchem J 154:104634. https://doi.org/10.1016/j.microc.2020.104634

    Article  CAS  Google Scholar 

  78. Zhou Z, Zhao P, Wang C, Yang P, Xie Y, Fei J (2020) Ultra-sensitive amperometric determination of quercetin by using a glassy carbon electrode modified with a nanocomposite prepared from aminated graphene quantum dots, thiolated beta-cyclodextrin and gold nanoparticles. Microchim Acta 187:130. https://doi.org/10.1007/s00604-019-4106-1

    Article  CAS  Google Scholar 

  79. Zhou Z, Gu C, Chen C, Zhao P, Xie Y, Fei J (2019) An ultrasensitive electrochemical sensor for quercetin based on 1-pyrenebutyrate functionalized reduced oxide graphene /mercapto-β-cyclodextrin /Au nanoparticles composite film. Sensor Actuat B-Chem 288:88–95. https://doi.org/10.1016/j.snb.2019.02.105

    Article  CAS  Google Scholar 

  80. Shahamirifard SA, Ghaedi M, Razmi Z, Hajati S (2018) A simple ultrasensitive electrochemical sensor for simultaneous determination of gallic acid and uric acid in human urine and fruit juices based on zirconia-choline chloride-gold nanoparticles-modified carbon paste electrode. Biosens Bioelectron 114:30–36. https://doi.org/10.1016/j.bios.2018.05.009

    Article  CAS  PubMed  Google Scholar 

  81. Zhang T, Chen Y, Huang W, Wang Y, Hu X (2018) A novel AuNPs-doped COFs composite as electrochemical probe for chlorogenic acid detection with enhanced sensitivity and stability. Sensor Actuat B-Chem 276:362–369. https://doi.org/10.1016/j.snb.2018.08.132

    Article  CAS  Google Scholar 

  82. Ghaani M, Nasirizadeh N, Yasini Ardakani SA, Mehrjardi FZ, Scampicchio M, Farris S (2016) Development of an electrochemical nanosensor for the determination of gallic acid in food. Anal Methods-UK 8:1103–1110. https://doi.org/10.1039/c5ay02747k

    Article  CAS  Google Scholar 

  83. Veerakumar P, Rajkumar C, Chen S-M, Thirumalraj B, Lin K-C (2018) Ultrathin 2D graphitic carbon nitride nanosheets decorated with silver nanoparticles for electrochemical sensing of quercetin. Electroanal Chem 826:207–216. https://doi.org/10.1016/j.jelechem.2018.08.031

    Article  CAS  Google Scholar 

  84. Peng Z, Jiang Z, Huang X, Li Y (2016) A novel electrochemical sensor of tryptophan based on silver nanoparticles/metal–organic framework composite modified glassy carbon electrode. RSC Adv 6:13742–13748. https://doi.org/10.1039/c5ra25251b

    Article  CAS  Google Scholar 

  85. Ma Y, Zhang Y, Wang L (2021) An electrochemical sensor based on the modification of platinum nanoparticles and ZIF-8 membrane for the detection of ascorbic acid. Talanta 226:122105. https://doi.org/10.1016/j.talanta.2021.122105

    Article  CAS  PubMed  Google Scholar 

  86. Wong A, Santos AM, da Fonseca AR, Vicentini FC, Fatibello-Filho O, Sotomayor DPT, M, (2021) Simultaneous determination of direct yellow 50, tryptophan, carbendazim, and caffeine in environmental and biological fluid samples using graphite pencil electrode modified with palladium nanoparticles. Talanta 222:121539. https://doi.org/10.1016/j.talanta.2020.121539

    Article  CAS  PubMed  Google Scholar 

  87. Pei F, Wu Y, Feng S, Wang H, He G, Hao Q et al (2022) Palladium nanoparticle-modified carbon spheres @ molybdenum disulfide core-shell composite for electrochemically detecting quercetin. Chemosensors 10:56. https://doi.org/10.3390/chemosensors10020056

    Article  CAS  Google Scholar 

  88. Xu B, Yang L, Zhao F, Zeng B (2017) A novel electrochemical quercetin sensor based on Pd/MoS2-ionic liquid functionalized ordered mesoporous carbon. Electrochim Acta 247:657–665. https://doi.org/10.1016/j.electacta.2017.06.130

    Article  CAS  Google Scholar 

  89. Liu Z, Lu B, Gao Y, Yang T, Yue R, Xu J et al (2016) Facile one-pot preparation of Pd–Au/PEDOT/graphene nanocomposites and their high electrochemical sensing performance for caffeic acid detection. RSC Adv 6:89157–89166. https://doi.org/10.1039/c6ra16488a

    Article  CAS  Google Scholar 

  90. Li J, Jiang J, Xu Z, Liu M, Tang S, Yang C et al (2018) Facile synthesis of Pd–Cu@Cu2O/N-RGO hybrid and its application for electrochemical detection of tryptophan. Electrochim Acta 260:526–535. https://doi.org/10.1016/j.electacta.2017.12.125

    Article  CAS  Google Scholar 

  91. Luo G, Deng Y, Zhu L, Liu J, Zhang B, Zhang Y et al (2020) Au-Co nanoparticles-embedded N-doped carbon nanotube hollow polyhedron modified electrode for electrochemical determination of quercetin. Microchim Acta 187:546. https://doi.org/10.1007/s00604-020-04531-0

    Article  CAS  Google Scholar 

  92. Du J, Tao Y, Zhang J, Xiong Z, Xie A, Luo S et al (2019) Co3O4-CuNi/reduced graphene composite for non-enzymatic detection of ascorbic acid. Mater Technol 34:665–673. https://doi.org/10.1080/10667857.2019.1612551

    Article  CAS  Google Scholar 

  93. Pan Y, Zuo J, Hou Z, Huang Y, Huang C (2020) Preparation of electrochemical sensor based on zinc oxide nanoparticles for simultaneous determination of AA, DA, and UA. Front Chem 8:592538. https://doi.org/10.3389/fchem.2020.592538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Saritha D, Koirala AR, Venu M, Reddy GD, Reddy AVB, Sitaram B et al (2019) A simple, highly sensitive and stable electrochemical sensor for the detection of quercetin in solution, onion and honey buckwheat using zinc oxide supported on carbon nanosheet (ZnO/CNS/MCPE) modified carbon paste electrode. Electrochim Acta 313:523–531. https://doi.org/10.1016/j.electacta.2019.04.188

    Article  CAS  Google Scholar 

  95. Liang W, Rong Y, Fan L, Zhang C, Dong W, Li J et al (2019) Simultaneous electrochemical sensing of serotonin, dopamine and ascorbic acid by using a nanocomposite prepared from reduced graphene oxide, Fe3O4 and hydroxypropyl-beta-cyclodextrin. Microchim Acta 186:751. https://doi.org/10.1007/s00604-019-3861-3

    Article  CAS  Google Scholar 

  96. Winiarski JP, Tavares BF, de Fátima UK, de Campos CEM, Souza AAU, Souza SMAGU et al (2022) Development of a multianalyte electrochemical sensor for depression biomarkers based on a waste of the steel industry for a sustainable and one-step electrode modification. Microchem J 175:107141. https://doi.org/10.1016/j.microc.2021.107141

    Article  CAS  Google Scholar 

  97. Khand NH, Palabiyik IM, Buledi JA, Ameen S, Memon AF, Ghumro T et al (2021) Functional Co3O4 nanostructure-based electrochemical sensor for direct determination of ascorbic acid in pharmaceutical samples. J Nanostructure Chem 11:455–468. https://doi.org/10.1007/s40097-020-00380-8

    Article  CAS  Google Scholar 

  98. Andrei V, Sharpe E, Vasilescu A, Andreescu S (2016) A single use electrochemical sensor based on biomimetic nanoceria for the detection of wine antioxidants. Talanta 156–157:112–118. https://doi.org/10.1016/j.talanta.2016.04.067

    Article  CAS  PubMed  Google Scholar 

  99. Arvand M, Daneshvar S (2019) Facile strategy for preparation of core/shell-structured zinc oxide-magnetite hybrids for quantification of quercetin and rutin in pharmaceutical herbs. J Anal Chem 74:920–932. https://doi.org/10.1134/s106193481909003x

    Article  CAS  Google Scholar 

  100. Xiao X, Zhang Z, Nan F, Zhao Y, Wang P, He F et al (2021) Mesoporous CuCo2O4 rods modified glassy carbon electrode as a novel non-enzymatic amperometric electrochemical sensors with high-sensitive ascorbic acid recognition. J Alloy Compd 852:157045. https://doi.org/10.1016/j.jallcom.2020.157045

    Article  CAS  Google Scholar 

  101. Ghoreishi SM, Malekian M (2017) Curve resolution on overlapped voltammograms for simultaneous determination of tryptophan and tyrosine at carbon paste electrode modified with ZnFe2O4 nanoparticles. Electroanal Chem 805:1–10. https://doi.org/10.1016/j.jelechem.2017.09.019

    Article  CAS  Google Scholar 

  102. Karthik R, Kumar JV, Chen SM, Kumar PS, Selvam V, Muthuraj V (2017) A selective electrochemical sensor for caffeic acid and photocatalyst for metronidazole drug pollutant – a dual role by rod-like SrV2O6. Sci Rep-UK 7:7254. https://doi.org/10.1038/s41598-017-07423-1

    Article  CAS  Google Scholar 

  103. Kumar JV, Karthik R, Chen SM, Marikkani S, Elangovan A, Muthuraj V (2017) Green synthesis of a novel flower-like cerium vanadate microstructure for electrochemical detection of tryptophan in food and biological samples. J Colloid Interface Sci 496:78–86. https://doi.org/10.1016/j.jcis.2017.02.009

    Article  CAS  PubMed  Google Scholar 

  104. Zhang J-W, Zhang X (2020) Electrode material fabricated by loading cerium oxide nanoparticles on reduced graphene oxide and its application in electrochemical sensor for tryptophan. J Alloy Compd 842:155934. https://doi.org/10.1016/j.jallcom.2020.155934

    Article  CAS  Google Scholar 

  105. Zhang J-W, Wang K-P, Zhang X (2020) Fabrication of SnO2 decorated graphene composite material and its application in electrochemical detection of caffeic acid in red wine. Mater Res Bull 126:110820. https://doi.org/10.1016/j.materresbull.2020.110820

    Article  CAS  Google Scholar 

  106. Karuppasamy P, Karthika A, Senthilkumar S, Rajapandian V (2022) An efficient and highly sensitive amperometric quercetin sensor based on a lotus flower like SeO2-decorated rGO nanocomposite modified glassy carbon electrode. Electrocatalysis 13:269–282. https://doi.org/10.1007/s12678-022-00707-9

    Article  CAS  Google Scholar 

  107. Sundaresan R, Mariyappan V, Chen S-M, Keerthi M, Ramachandran R (2021) Electrochemical sensor for detection of tryptophan in the milk sample based on MnWO4 nanoplates encapsulated RGO nanocomposite. Colloid Surface A 625:126889. https://doi.org/10.1016/j.colsurfa.2021.126889

    Article  CAS  Google Scholar 

  108. Huang H, Yue Y, Chen Z, Chen Y, Wu S, Liao J et al (2019) Electrochemical sensor based on a nanocomposite prepared from TmPO4 and graphene oxide for simultaneous voltammetric detection of ascorbic acid, dopamine and uric acid. Microchim Acta 186:189. https://doi.org/10.1007/s00604-019-3299-7

    Article  CAS  Google Scholar 

  109. Murugan E, Kumar K (2019) Fabrication of SnS/TiO2@GO composite coated glassy carbon electrode for concomitant determination of paracetamol, tryptophan, and caffeine in pharmaceutical formulations. Anal Chem 91:5667–5676. https://doi.org/10.1021/acs.analchem.8b05531

    Article  CAS  PubMed  Google Scholar 

  110. Gao J, Li H, Li M, Wang G, Long Y, Li P et al (2021) Polydopamine/graphene/MnO2 composite-based electrochemical sensor for in situ determination of free tryptophan in plants. Anal Chim Acta 1145:103–113. https://doi.org/10.1016/j.aca.2020.11.008

    Article  CAS  PubMed  Google Scholar 

  111. Xie A, Wang H, Zhu J, Chang J, Gu L, Liu C et al (2021) A caffeic acid sensor based on CuZnOx/MWCNTs composite modified electrode. Microchem J 161:105789. https://doi.org/10.1016/j.microc.2020.105786

    Article  CAS  Google Scholar 

  112. Yin C, Zhuang Q, Xiao Q, Wang Y, Xie J (2021) Electropolymerization of poly(methylene blue) on flower-like nickel-based MOFs used for ratiometric electrochemical sensing of total polyphenolic content in chrysanthemum tea. Anal Methods-UK 13:1154–1163. https://doi.org/10.1039/d1ay00028d

    Article  CAS  Google Scholar 

  113. Li J, Jiang J, Liu M, Xu Z, Deng P, Qian D et al (2017) Facile synthesis of MnO2-embedded flower-like hierarchical porous carbon microspheres as an enhanced electrocatalyst for sensitive detection of caffeic acid. Anal Chim Acta 985:155–165. https://doi.org/10.1016/j.aca.2017.07.002

    Article  CAS  PubMed  Google Scholar 

  114. Joseph T, Thomas J, Thomas T, Thomas N (2021) Selective nanomolar electrochemical detection of serotonin, dopamine and tryptophan using TiO2/RGO/CPE-influence of reducing agents. New J Chem 45:22166–22180. https://doi.org/10.1039/d1nj03697a

    Article  CAS  Google Scholar 

  115. Puangjan A, Chaiyasith S (2016) An efficient ZrO2/Co3O4/reduced graphene oxide nanocomposite electrochemical sensor for simultaneous determination of gallic acid, caffeic acid and protocatechuic acid natural antioxidants. Electrochim Acta 211:273–288. https://doi.org/10.1016/j.electacta.2016.04.185

    Article  CAS  Google Scholar 

  116. Saleh Mohammadnia M, Marzi Khosrowshahi E, Naghian E, Homayoun Keihan A, Sohouli E, Plonska-Brzezinska ME et al (2020) Application of carbon nanoonion-NiMoO4-MnWO4 nanocomposite for modification of glassy carbon electrode: Electrochemical determination of ascorbic acid. Microchem J 159:105470. https://doi.org/10.1016/j.microc.2020.105470

    Article  CAS  Google Scholar 

  117. Chen Y, Huang W, Chen K, Zhang T, Wang Y, Wang J (2019) A novel electrochemical sensor based on core-shell-structured metal-organic frameworks: the outstanding analytical performance towards chlorogenic acid. Talanta 196:85–91. https://doi.org/10.1016/j.talanta.2018.12.033

    Article  CAS  PubMed  Google Scholar 

  118. Mariyappan V, Karuppusamy N, Chen SM, Raja P, Ramachandran R (2022) Electrochemical determination of quercetin using glassy carbon electrode modified with WS2/GdCoO3 nanocomposite. Microchim Acta 189:118. https://doi.org/10.1007/s00604-022-05219-3

    Article  CAS  Google Scholar 

  119. Yang X, Feng B, He X, Li F, Ding Y, Fei J (2013) Carbon nanomaterial based electrochemical sensors for biogenic amines. Microchim Acta 180:935–956. https://doi.org/10.1007/s00604-013-1015-6

    Article  CAS  Google Scholar 

  120. Hatamie A, Rahmati R, Rezvani E, Angizi S, Simchi A (2019) Yttrium hexacyanoferrate microflowers on freestanding three-dimensional graphene substrates for ascorbic acid detection. ACS Appl Nano Mater 2:2212–2221. https://doi.org/10.1021/acsanm.9b00167

    Article  CAS  Google Scholar 

  121. Zhu Q, Bao J, Huo D, Yang M, Wu H, Hou C et al (2017) 3DGH-Fc based electrochemical sensor for the simultaneous determination of ascorbic acid, dopamine and uric acid. Electroanal Chem 799:459–467. https://doi.org/10.1016/j.jelechem.2017.07.004

    Article  CAS  Google Scholar 

  122. Liu LJ, Gao X, Zhang P, Feng SL, Hu FD, Li YD et al (2014) Ultrasensitive detection of ferulic acid using poly(diallyldimethylammonium chloride) functionalized graphene-based electrochemical sensor. J Anal Methods Chem 2014:424790. https://doi.org/10.1155/2014/424790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Azzouz A, Goud KY, Raza N, Ballesteros E, Lee S-E, Hong J et al (2019) Nanomaterial-based electrochemical sensors for the detection of neurochemicals in biological matrices. TrAC-Trend Anal Chem 110:15–34. https://doi.org/10.1016/j.trac.2018.08.002

    Article  CAS  Google Scholar 

  124. Magesa F, Wu Y, Tian Y, Vianney J-M, Buza J, He Q et al (2019) Graphene and graphene like 2D graphitic carbon nitride: electrochemical detection of food colorants and toxic substances in environment. Trends Environ Anal 23:e00064. https://doi.org/10.1016/j.teac.2019.e00064

    Article  CAS  Google Scholar 

  125. Manikandan VS, Sidhureddy B, Thiruppathi AR, Chen A (2019) Sensitive electrochemical detection of caffeic acid in wine based on fluorine-doped graphene oxide. Sensors (Basel) 19:1604. https://doi.org/10.3390/s19071604

    Article  CAS  Google Scholar 

  126. Jiang J, Ding D, Wang J, Lin X, Diao G (2021) Three-dimensional nitrogen-doped graphene-based metal-free electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, uric acid, and acetaminophen. Analyst 146:964–970. https://doi.org/10.1039/d0an01912g

    Article  CAS  PubMed  Google Scholar 

  127. Mariyappan V, Chen S-M, Jeyapragasam T, Devi JM (2022) Designing and construction of a cobalt-metal-organic framework/heteroatoms co-doped reduced graphene oxide mesoporous nanocomposite based efficient electrocatalyst for chlorogenic acid detection. J Alloy Compd 898:163028. https://doi.org/10.1016/j.jallcom.2021.163028

    Article  CAS  Google Scholar 

  128. Karuppusamy N, Mariyappan V, Chen S-M, Keerthi M, Ramachandran R (2021) A simple electrochemical sensor for quercetin detection based on cadmium telluride nanoparticle incorporated on boron, sulfur co-doped reduced graphene oxide composite. Colloid Surface A 626:127094. https://doi.org/10.1016/j.colsurfa.2021.127094

    Article  CAS  Google Scholar 

  129. Abdel-Hamid R, Bakr A, Newair EF, Garcia F (2019) Simultaneous voltammetric determination of gallic and protocatechuic acids in mango juice using a reduced graphene oxide-based electrochemical sensor. Beverages 5:17. https://doi.org/10.3390/beverages5010017

    Article  CAS  Google Scholar 

  130. Hu J, Zhang Z (2020) Application of electrochemical sensors based on carbon nanomaterials for detection of flavonoids. Nanomaterials (Basel) 10:2020. https://doi.org/10.3390/nano10102020

    Article  CAS  Google Scholar 

  131. Araújo DAG, Camargo JR, Pradela-Filho LA, Lima AP, Muñoz RAA, Takeuchi RM et al (2020) A lab-made screen-printed electrode as a platform to study the effect of the size and functionalization of carbon nanotubes on the voltammetric determination of caffeic acid. Microchem J 158:105297. https://doi.org/10.1016/j.microc.2020.105297

    Article  CAS  Google Scholar 

  132. Terbouche A, Boulahia S, Mecerli S, Ait-Ramdane-Terbouche C, Belkhalfa H, Guerniche D et al (2022) A novel hybrid carbon materials-modified electrochemical sensor used for detection of gallic acid. Measurement 187:110369. https://doi.org/10.1016/j.measurement.2021.110369

    Article  Google Scholar 

  133. Zhao H, Ran Q, Li Y, Li B, Liu B, Ma H et al (2020) Highly sensitive detection of gallic acid based on 3D interconnected porous carbon nanotubes/carbon nanosheets modified glassy carbon electrode. J Mater Res Technol 9:9422–9433. https://doi.org/10.1016/j.jmrt.2020.05.102

    Article  CAS  Google Scholar 

  134. Mohamadi M, Mostafavi A, Torkzadeh-Mahani M (2015) Voltammetric determination of rosmarinic acid on chitosan/carbon nanotube composite-modified carbon paste electrode covered with DNA. J Electrochem Soc 162:B344–B349. https://doi.org/10.1149/2.0581512jes

    Article  CAS  Google Scholar 

  135. Vilian ATE, Chen S-M (2014) Preparation of carbon nanotubes decorated with manganese dioxide nanoparticles for electrochemical determination of ferulic acid. Microchim Acta 182:1103–1111. https://doi.org/10.1007/s00604-014-1431-2

    Article  CAS  Google Scholar 

  136. Gopi PK, Subburaj S, Chen S-M, Chia-Jung W, Ravikumar CH (2021) Pr-TiO2 decorated functionalized-carbon nano tubes for highly selective detection of tryptophan in pharmaceutical samples for neurotransmitter treatment. J Electrochem Soc 168:057532. https://doi.org/10.1149/1945-7111/ac0302

    Article  CAS  Google Scholar 

  137. Karimi-Maleh H, Farahmandfar R, Hosseinpour R, Alizadeh J, Abbaspourrad A (2019) Determination of ferulic acid in the presence of butylated hydroxytoluene as two phenolic antioxidants using a highly conductive food nanostructure electrochemical sensor. Chem Pap 73:2441–2447. https://doi.org/10.1007/s11696-019-00793-y

    Article  CAS  Google Scholar 

  138. Sakthivel M, Ramaraj S, Chen SM, Dinesh B, Ramasamy HV, Lee YS (2018) Entrapment of bimetallic CoFeSe2 nanosphere on functionalized carbon nanofiber for selective and sensitive electrochemical detection of caffeic acid in wine samples. Anal Chim Acta 1006:22–32. https://doi.org/10.1016/j.aca.2017.12.044

    Article  CAS  PubMed  Google Scholar 

  139. Chokkareddy R, Redhi GG, Karthick T (2019) A lignin polymer nanocomposite based electrochemical sensor for the sensitive detection of chlorogenic acid in coffee samples. Heliyon 5:e01457. https://doi.org/10.1016/j.heliyon.2019.e01457

    Article  PubMed  PubMed Central  Google Scholar 

  140. Mani V, Devadas B, Chen SM (2013) Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide-multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor. Biosens Bioelectron 41:309–315. https://doi.org/10.1016/j.bios.2012.08.045

    Article  CAS  PubMed  Google Scholar 

  141. Gopal P, Reddy TM, Palakollu VN (2017) Development, characterization and application of a carbon-based nanomaterial composite as an electrochemical sensor for monitoring natural antioxidant (gallic acid) in beverages. ChemistrySelect 2:3804–3811. https://doi.org/10.1002/slct.201602053

    Article  CAS  Google Scholar 

  142. Wang H, Xie A, Li S, Wang J, Chen K, Su Z et al (2022) Three-dimensional g-C3N4/MWNTs/GO hybrid electrode as electrochemical sensor for simultaneous determination of ascorbic acid, dopamine and uric acid. Anal Chim Acta 1211:339907. https://doi.org/10.1016/j.aca.2022.339907

    Article  CAS  PubMed  Google Scholar 

  143. Wang C, Li J, Luo X, Hui J, Liu X, Tan J et al (2016) Graphitic carbon nitride nanosheets modified multi-walled carbon nanotubes as 3D high efficient sensor for simultaneous determination of dopamine, uric acid and tryptophan. Electroanal Chem 780:147–152. https://doi.org/10.1016/j.jelechem.2016.09.004

    Article  CAS  Google Scholar 

  144. Liu H, Hassan M, Bo X, Guo L (2019) Fumarate-based metal-organic framework/mesoporous carbon as a novel electrochemical sensor for the detection of gallic acid and luteolin. Electroanal Chem 849:113378. https://doi.org/10.1016/j.jelechem.2019.113378

    Article  CAS  Google Scholar 

  145. Zhao X, Bai J, Bo X, Guo L (2019) A novel electrochemical sensor based on 2D CuTCPP nanosheets and platelet ordered mesoporous carbon composites for hydroxylamine and chlorogenic acid. Anal Chim Acta 1075:71–80. https://doi.org/10.1016/j.aca.2019.05.030

    Article  CAS  PubMed  Google Scholar 

  146. Bi Y, Hei Y, Wang N, Liu J, Ma CB (2021) Synthesis of a clustered carbon aerogel interconnected by carbon balls from the biomass of taros for construction of a multi-functional electrochemical sensor. Anal Chim Acta 1164:338514. https://doi.org/10.1016/j.aca.2021.338514

    Article  CAS  PubMed  Google Scholar 

  147. Chen B, Xie Q, Zhang S, Lin L, Zhang Y, Zhang L et al (2021) A novel electrochemical molecularly imprinted senor based on CuCo2O4@ biomass derived carbon for sensitive detection of tryptophan. Electroanal Chem 901:115680. https://doi.org/10.1016/j.jelechem.2021.115680

    Article  CAS  Google Scholar 

  148. Krishnan S, Tong L, Liu S, Xing R (2020) A mesoporous silver-doped TiO2-SnO2 nanocomposite on g-C3N4 nanosheets and decorated with a hierarchical core-shell metal-organic framework for simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Microchim Acta 187:82. https://doi.org/10.1007/s00604-019-4045-x

    Article  CAS  Google Scholar 

  149. Liu L, Zhou Y, Liu S, Xu M (2018) The applications of metal-organic frameworks in electrochemical sensors. ChemElectroChem 5:6–19. https://doi.org/10.1002/celc.201700931

    Article  CAS  Google Scholar 

  150. Palakollu VN, Chen D, Tang JN, Wang L, Liu C (2022) Recent advancements in metal-organic frameworks composites based electrochemical (bio)sensors. Microchim Acta 189:161. https://doi.org/10.1007/s00604-022-05238-0

    Article  CAS  Google Scholar 

  151. Zhang J, Wang D, Li Y (2019) Ratiometric electrochemical sensors associated with self-cleaning electrodes for simultaneous detection of adrenaline, serotonin, and tryptophan. ACS Appl Mater Inter 11:13557–13563. https://doi.org/10.1021/acsami.8b22572

    Article  CAS  Google Scholar 

  152. Ziyatdinova G, Guss E, Yakupova E (2021) Electrochemical sensors based on the electropolymerized natural phenolic antioxidants and their analytical application. Sensors (Basel) 21:8385. https://doi.org/10.3390/s21248385

    Article  CAS  Google Scholar 

  153. Kalambate PK, Noiphung J, Rodthongkum N, Larpant N, Thirabowonkitphithan P, Rojanarata T et al (2021) Nanomaterials-based electrochemical sensors and biosensors for the detection of non-steroidal anti-inflammatory drugs. TrAC-Trend Anal Chem 143:116403. https://doi.org/10.1016/j.trac.2021.116403

    Article  CAS  Google Scholar 

  154. Motshakeri M, Travas-Sejdic J, Phillips ARJ, Kilmartin PA (2018) Rapid electroanalysis of uric acid and ascorbic acid using a poly(3,4-ethylenedioxythiophene)-modified sensor with application to milk. Electrochim Acta 265:184–193. https://doi.org/10.1016/j.electacta.2018.01.147

    Article  CAS  Google Scholar 

  155. Rejithamol R, Krishnan RG, Beena S (2021) Disposable pencil graphite electrode decorated with a thin film of electro-polymerized 2, 3, 4, 6, 7, 8, 9, 10-octahydropyrimido [1, 2-a] azepine for simultaneous voltammetric analysis of dopamine, serotonin and tryptophan. Materi Chem Phys 258:123857. https://doi.org/10.1016/j.matchemphys.2020.123857

    Article  CAS  Google Scholar 

  156. Chakkarapani LD, Sangilimuthu SN, Arumugam S (2019) New electrochemical sensor for the detection of biological analytes using poly(amido amine) dendrimer and poly(Nile blue)-modified electrode. Electroanal Chem 855:113486. https://doi.org/10.1016/j.jelechem.2019.113486

    Article  CAS  Google Scholar 

  157. Deng P, Feng J, Xiao J, Wei Y, Liu X, Li J et al (2021) Application of a simple and sensitive electrochemical sensor in simultaneous determination of paracetamol and ascorbic acid. J Electrochem Soc 168:096501. https://doi.org/10.1149/1945-7111/ac1e59

    Article  CAS  Google Scholar 

  158. Feminus JJ, Manikandan R, Narayanan SS, Deepa PN (2019) Determination of gallic acid using poly(glutamic acid): graphene modified electrode. J Chem Sci. https://doi.org/10.1007/s12039-018-1587-0

    Article  Google Scholar 

  159. Ziyatdinova G, Zhupanova A, Davletshin R (2021) Simultaneous determination of ferulic acid and vanillin in vanilla extracts using voltammetric sensor based on electropolymerized bromocresol purple. Sensors (Basel) 22:288. https://doi.org/10.3390/s22010288

    Article  CAS  Google Scholar 

  160. Zhupanova A, Guss E, Ziyatdinova G, Budnikov H (2020) Simultaneous voltammetric determination of flavanones using an electrode based on functionalized single-walled carbon nanotubes and polyaluminon. Anal Lett 53:2170–2189. https://doi.org/10.1080/00032719.2020.1732402

    Article  CAS  Google Scholar 

  161. Bottari D, Pigani L, Zanardi C, Terzi F, Paţurcă SV, Grigorescu SD et al (2019) Electrochemical sensing of caffeic acid using gold nanoparticles embedded in poly(3,4-ethylenedioxythiophene) layer by sinusoidal voltage procedure. Chemosensors 7:65. https://doi.org/10.3390/chemosensors7040065

    Article  CAS  Google Scholar 

  162. García-Guzmán JJ, López-Iglesias D, Cubillana-Aguilera L, Bellido-Milla D, Palacios-Santander JM, Marin M et al (2021) Silver nanostructures-poly(3,4-ethylenedioxythiophene) sensing material prepared by sinusoidal voltage procedure for detection of antioxidants. Electrochim Acta 393:139082. https://doi.org/10.1016/j.electacta.2021.139082

    Article  CAS  Google Scholar 

  163. Özdokur KV, Koçak ÇC (2019) Simultaneous determination of rosmarinic acid and protocatechuic acid at poly(o-phenylenediamine)/Pt nanoparticles modified glassy carbon electrode. Electroanal 31:2359–2367. https://doi.org/10.1002/elan.201900144

    Article  CAS  Google Scholar 

  164. Zhang S, Zhuang X, Chen D, Luan F, He T, Tian C et al (2019) Simultaneous voltammetric determination of guanine and adenine using MnO2 nanosheets and ionic liquid-functionalized graphene combined with a permeation-selective polydopamine membrane. Microchim Acta 186:450. https://doi.org/10.1007/s00604-019-3577-4

    Article  CAS  Google Scholar 

  165. Arroquia A, Acosta I, Armada MPG (2020) Self-assembled gold decorated polydopamine nanospheres as electrochemical sensor for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan. Mater Sci Eng C-Mater 109:110602. https://doi.org/10.1016/j.msec.2019.110602

    Article  Google Scholar 

  166. Wang H, Feng X, Bo X, Zhou M, Guo L (2020) Nickel-based metal-organic framework/crosslinked tubular poly(3,4-ethylenedioxythiophene) composite as an electrocatalyst for the detection of gallic acid and tinidazole. ChemElectroChem 7:4031–4037. https://doi.org/10.1002/celc.202000991

    Article  CAS  Google Scholar 

  167. Chen Y, Huang W, Chen K, Zhang T, Wang Y, Wang J (2019) Facile fabrication of electrochemical sensor based on novel core-shell PPy@ZIF-8 structures: enhanced charge collection for quercetin in human plasma samples. Sensor Actuat B-Chem 290:434–442. https://doi.org/10.1016/j.snb.2019.04.006

    Article  CAS  Google Scholar 

  168. Sabbaghi N, Azizi-Khereshki N, Farsadrooh M, Elyasi Z, Javadian H, Sadeghi M et al (2022) Synthesis of poly(dopamine quinone-chromium(III) complex) @hierarchical cabbage flower-like cobalt as a novel mesoporous nanocomposite modifier of graphite paste electrode for electrochemical determination of quercetin in biological samples. Colloid Surface A 643:128739. https://doi.org/10.1016/j.colsurfa.2022.128739

    Article  CAS  Google Scholar 

  169. Arabi M, Ostovan A, Bagheri AR, Guo X, Wang L, Li J et al (2020) Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. TrAC-Trend Anal Chem 128:115923. https://doi.org/10.1016/j.trac.2020.115923

    Article  CAS  Google Scholar 

  170. Arabi M, Ostovan A, Zhang Z, Wang Y, Mei R, Fu L et al (2021) Label-free SERS detection of Raman-inactive protein biomarkers by Raman reporter indicator: toward ultrasensitivity and universality. Biosens Bioelectron 174:112825. https://doi.org/10.1016/j.bios.2020.112825

    Article  CAS  PubMed  Google Scholar 

  171. Arabi M, Chen L (2022) Technical challenges of molecular-imprinting-based optical sensors for environmental pollutants. Langmuir 38:5963–5967. https://doi.org/10.1021/acs.langmuir.2c00935

    Article  CAS  PubMed  Google Scholar 

  172. Arabi M, Ostovan A, Li J, Wang X, Zhang Z, Choo J et al (2021) Molecular imprinting: green perspectives and strategies. Adv Mater 33:e2100543. https://doi.org/10.1002/adma.202100543

    Article  CAS  PubMed  Google Scholar 

  173. Santos Wde J, Santhiago M, Yoshida IV, Kubota LT (2011) Novel electrochemical sensor for the selective recognition of chlorogenic acid. Anal Chim Acta 695:44–50. https://doi.org/10.1016/j.aca.2011.03.018

    Article  CAS  PubMed  Google Scholar 

  174. Ribeiro CM, Miguel EM, Silva JDS, Silva CBD, Goulart MOF, Kubota LT et al (2016) Application of a nanostructured platform and imprinted sol-gel film for determination of chlorogenic acid in food samples. Talanta 156–157:119–125. https://doi.org/10.1016/j.talanta.2016.05.020

    Article  CAS  PubMed  Google Scholar 

  175. Shojaei S, Nasirizadeh N, Entezam M, Koosha M, Azimzadeh M (2016) An electrochemical nanosensor based on molecularly imprinted polymer (MIP) for detection of gallic acid in fruit juices. Food Anal Method 9:2721–2731. https://doi.org/10.1007/s12161-016-0459-9

    Article  Google Scholar 

  176. Wu Y, Deng P, Tian Y, Ding Z, Li G, Liu J et al (2020) Rapid recognition and determination of tryptophan by carbon nanotubes and molecularly imprinted polymer-modified glassy carbon electrode. Bioelectrochemistry 131:107393. https://doi.org/10.1016/j.bioelechem.2019.107393

    Article  CAS  PubMed  Google Scholar 

  177. Yang L, Xu B, Ye H, Zhao F, Zeng B (2017) A novel quercetin electrochemical sensor based on molecularly imprinted poly(para-aminobenzoic acid) on 3D Pd nanoparticles-porous graphene-carbon nanotubes composite. Sensor Actuat B-Chem 251:601–608. https://doi.org/10.1016/j.snb.2017.04.006

    Article  CAS  Google Scholar 

  178. Ye C, Chen X, Xu J, Xi H, Wu T, Deng D et al (2020) Highly sensitive detection to gallic acid by polypyrrole-based MIES supported by MOFs-Co2+@Fe3O4. Electroanal Chem 859:113839. https://doi.org/10.1016/j.jelechem.2020.113839

    Article  CAS  Google Scholar 

  179. Zhang W, Zong L, Geng G, Li Y, Zhang Y (2018) Enhancing determination of quercetin in honey samples through electrochemical sensors based on highly porous polypyrrole coupled with nanohybrid modified GCE. Sensor Actuat B-Chem 257:1099–1109. https://doi.org/10.1016/j.snb.2017.11.059

    Article  CAS  Google Scholar 

  180. Ejaz A, Jeon S (2017) A highly stable and sensitive GO-XDA-Mn2O3 electrochemical sensor for simultaneous electrooxidation of paracetamol and ascorbic acid. Electrochim Acta 245:742–751. https://doi.org/10.1016/j.electacta.2017.05.193

    Article  CAS  Google Scholar 

  181. Ghanbari K, Hajian A (2017) Electrochemical characterization of Au/ZnO/PPy/RGO nanocomposite and its application for simultaneous determination of ascorbic acid, epinephrine, and uric acid. Electroanal Chem 801:466–479. https://doi.org/10.1016/j.jelechem.2017.07.024

    Article  CAS  Google Scholar 

  182. Asadi Samie H, Arvand M (2019) RuO2 nanowires on electrospun CeO2-Au nanofibers/functionalized carbon nanotubes/graphite oxide nanocomposite modified screen-printed carbon electrode for simultaneous determination of serotonin, dopamine and ascorbic acid. J Alloy Compd 782:824–836. https://doi.org/10.1016/j.jallcom.2018.12.253

    Article  CAS  Google Scholar 

  183. Tu X, Xie Y, Gao F, Ma X, Lin X, Huang X et al (2020) Self-template synthesis of flower-like hierarchical graphene/copper oxide@copper(II) metal-organic framework composite for the voltammetric determination of caffeic acid. Mikrochim Acta 187:258. https://doi.org/10.1007/s00604-020-04238-2

    Article  CAS  PubMed  Google Scholar 

  184. Saljooqi A, Shamspur T, Mostafavi A (2019) Fe3O4@SiO2-PANI-Au nanocomposite prepared for electrochemical determination of quercetin in food samples and biological fluids. Electroanalysis 32:581–587. https://doi.org/10.1002/elan.201900386

    Article  CAS  Google Scholar 

  185. Ghanbari K, Bonyadi S (2018) An electrochemical sensor based on reduced graphene oxide decorated with polypyrrole nanofibers and zinc oxide–copper oxide p–n junction heterostructures for the simultaneous voltammetric determination of ascorbic acid, dopamine, paracetamol, and tryptophan. New J Chem 42:8512–8523. https://doi.org/10.1039/c8nj00857d

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Changzhou Science and Technology Support Plan (Social Development, CE20205052, China) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (NO. SJCX22_1361, Jiangsu Province, China). The characterizations were provided by Analysis and Testing Center, NERC Biomass of Changzhou University (Jiangsu Province, China).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aijuan Xie or Shiping Luo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Jiang, S., Pan, J. et al. Nanomaterials-based electrochemical sensors for the detection of natural antioxidants in food and biological samples: research progress. Microchim Acta 189, 318 (2022). https://doi.org/10.1007/s00604-022-05403-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05403-5

Keywords

Navigation