Skip to main content

Advertisement

Log in

Sensing performance and mechanism of carbon dots encapsulated into metal–organic frameworks

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Metal–organic frameworks (MOFs) can be combined with nanomaterials and the combined composites have excellent optical properties. Carbon dots (CDs) with tiny particle size, non-toxic and rich surface functional groups are novel fluorescent materials. Carbon dots@metal–organic frameworks (CDs@MOFs) are synthesized by encapsulating CDs into MOFs. CDs@MOFs are promising composites for the preparation of a new generation of fluorescence sensors, which combine the hybrid properties of MOFs and the special optical properties of CDs. Urged as such, we are encouraged to categorize according to the sensing mechanisms. These include fluorescence resonance energy transfer (FRET), aggregation-caused quenching (ACQ), static quenching, dynamic quenching, photo-induced electron transfer (PET), inner filter effect (IFE) and so on. Based on the above mechanisms, CDs@MOFs can specifically interact with target analytes to generate fluorescence quenching. This review covers the research progress of CDs@MOFs in recent five years (with 103 refs), synthetic design of CDs@MOFs and introduces the sensing mechanism. The current challenges and future research directions are discussed briefly.

Graphical abstract

The sensing mechanism and applications of CDs@MOFs

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Hassan MH, Alkordi MH, Hassanien A (2019) Probing the conductivity of metal-organic framework-graphene nanocomposite. Mater Lett 246:13–16

    Article  CAS  Google Scholar 

  2. Sompornpailin D, Ratanatawanate C, Sattayanon C, Namuangruk S, Punyapalakul P (2020) Selective adsorption mechanisms of pharmaceuticals on benzene-1,4-dicarboxylic acid-based MOFs: effects of a flexible framework, adsorptive interactions and the DFT study. Sci Total Environ 720:137449

    Article  CAS  PubMed  Google Scholar 

  3. Zhang S, Yang Z, Gong K, Xu B, Mei H, Zhang H, Zhang J, Kang Z, Yan Y, Sun D (2019) Temperature controlled diffusion of hydroxide ions in 1D channels of Ni-MOF-74 for its complete conformal hydrolysis to hierarchical Ni(OH)2 supercapacitor electrodes. Nanoscale 11(19):9598–9607

    Article  CAS  PubMed  Google Scholar 

  4. Colombo V, Montoro C, Maspero A, Palmisano G, Masciocchi N, Galli S, Barea E, Navarro JAR (2012) Tuning the adsorption properties of isoreticular pyrazolate-based metal-organic frameworks through ligand modification. J Am Chem Soc 134(30):12830–12843

    Article  CAS  PubMed  Google Scholar 

  5. Zou J, Zhong W, Gao F, Tu XL, Chen SX, Huang XG, Wang XQ, Lu LM, Yu YF (2020) Sensitive electrochemical platform for trace determination of Pb2+ based on multilayer Bi-MOFs/reduced graphene oxide films modified electrode. Microchim Acta 187(11):8

    Article  Google Scholar 

  6. Levenson DA, Zhang J, Gelfand BS, Kammampata SP, Thangadurai V, Shimizu GKH (2020) Particle size dependence of proton conduction in a cationic lanthanum phosphonate MOF. Dalton Trans 49(13):4022–4029

    Article  CAS  PubMed  Google Scholar 

  7. Sharma R, Andersen SM (2018) Quantification on degradation mechanisms of polymer electrolyte membrane fuel cell catalyst layers during an accelerated stress test. ACS Catal 8(4):3424–3434

    Article  CAS  Google Scholar 

  8. Zhao Y, Wan M-Y, Bai J-P, Zeng H, Lu W, Li D (2019) pH-modulated luminescence switching in a Eu-MOF: rapid detection of acidic amino acids. J Mater Chem A 7(18):11127–11133

    Article  CAS  Google Scholar 

  9. Zorlu Y, Erbahar D, Cetinkaya A, Bulut A, Erkal TS, Yazaydin AO, Beckmann J, Yucesan G (2019) Correction: A cobalt arylphosphonate MOF-superior stability, sorption and magnetism. Chem Commun (Camb) 55(21):3168

    Article  CAS  Google Scholar 

  10. Wang B, Lv XL, Feng DW, Xie LH, Zhang J, Li M, Xie YB, Li JR, Zhou HC (2016) Highly stable Zr(IV)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water. J Am Chem Soc 138(19):6204–6216

    Article  CAS  PubMed  Google Scholar 

  11. Zheng DL, Yang JY, Zheng ZY, Peng MX, Ng WM, Chen YW, Huang LJ, Gao WH (2022) Sensitive photoelectrochemical detection of colitoxin DNA based on NCDs@CuO/ZnO heterostructured nanocomposites with efficient separation capacity of photo-induced carriers. Microchim Acta 189(4):12

    Article  Google Scholar 

  12. Hu P, Zhu XM, Luo XH, Hu XF, Ji LD (2020) Cathodic electrodeposited Cu-BTC MOFs assembled from Cu(II) and trimesic acid for electrochemical determination of bisphenol A. Microchim Acta 187(2):9

    Article  Google Scholar 

  13. Chan KM, Xu W, Kwon H, Kietrys AM, Kool ET (2017) Luminescent carbon dot mimics assembled on DNA. J Am Chem Soc 139(37):13147–13155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu S, Min H, Shi W, Cheng P (2020) Multicenter metal-organic framework-based ratiometric fluorescent sensors. Adv Mater 32(3):e1805871

    Article  PubMed  Google Scholar 

  15. Li B, Wang XT, Liu LH, Zhang XF, Gao Y, Deng ZP, Huo LH, Gao S (2021) Bimetallic MOFs-derived coral-like Ag-Mo2C/C interwoven nanorods for amperometric detection of hydrogen peroxide. Microchim Acta 188(7):10

    Article  Google Scholar 

  16. Liu YF, Lin DY, Yang WT, An XY, Sun AH, Fan XL, Pan QH (2020) In situ modification of ZIF-67 with multi-sulfonated dyes for great enhanced methylene blue adsorption via synergistic effect. Microporous Mesoporous Mat 303:9

    Article  Google Scholar 

  17. Lin YN, Sun YL, Dai YX, Zhu XD, Liu H, Han R, Gao DD, Luo CN, Wang XY (2020) A chemiluminescence assay for determination of lysozyme based on the use of magnetic alginate-aptamer composition and hemin@HKUST-1. Microchim Acta 187(5):8

    Article  Google Scholar 

  18. Tan Z, Li HX, Feng QX, Jiang LL, Pan HY, Huang ZY, Zhou Q, Zhou HH, Ma S, Kuang YF (2019) One-pot synthesis of Fe/N/S-doped porous carbon nanotubes for efficient oxygen reduction reaction. J Mater Chem A 7(4):1607–1615

    Article  CAS  Google Scholar 

  19. Sun CY, To WP, Hung FF, Wang XL, Su ZM, Che CM (2018) Metal-organic framework composites with luminescent pincer platinum(II) complexes: (MMLCT)-M-3 emission and photoinduced dehydrogenation catalysis. Chem Sci 9(8):2357–2364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed Engl 49(38):6726–6744

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Q, Wang R, Feng B, Zhong X, Ostrikov K (2021) Photoluminescence mechanism of carbon dots: triggering high-color-purity red fluorescence emission through edge amino protonation. Nat Commun 12(1):6856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sun X, Lei Y (2017) Fluorescent carbon dots and their sensing applications. TrAC, Trends Anal Chem 89:163–180

    Article  CAS  Google Scholar 

  23. Li SH, Pang CH, Ma XH, Zhang YL, Xu Z, Li JP, Zhang M, Wang MY (2021) Microfluidic paper-based chip for parathion-methyl detection based on a double catalytic amplification strategy. Microchim Acta 188(12):8

    Article  Google Scholar 

  24. Zhu SJ, Song YB, Zhao XH, Shao JR, Zhang JH, Yang B (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res 8(2):355–381

    Article  CAS  Google Scholar 

  25. Lim SY, Shen W, Gao ZQ (2015) Carbon quantum dots and their applications. Chem Soc Rev 44(1):362–381

    Article  CAS  PubMed  Google Scholar 

  26. Cui S, Wu Y, Liu Y, Guan Q, Zhang Y, Zhang Y, Luo S, Xu M, Wang J (2020) Synthesis of carbon dots with a tunable photoluminescence and their applications for the detection of acetone and hydrogen peroxide. Chin Chem Lett 31(2):487–493

    Article  CAS  Google Scholar 

  27. Miao P, Han K, Tang Y, Wang B, Lin T, Cheng W (2015) Recent advances in carbon nanodots: synthesis, properties and biomedical applications. Nanoscale 7(5):1586–1595

    Article  CAS  PubMed  Google Scholar 

  28. Sharma V, Tiwari P, Kaur N, Mobin SM (2021) Optical nanosensors based on fluorescent carbon dots for the detection of water contaminants: a review. Environ Chem Lett 19(4):3229–3241

    Article  CAS  Google Scholar 

  29. Atchudan R, Edison T, Sethuraman MG, Lee YR (2016) Efficient synthesis of highly fluorescent nitrogen-doped carbon dots for cell imaging using unripe fruit extract of Prunus mume. Appl Surf Sci 384:432–441

    Article  CAS  Google Scholar 

  30. Atchudan R, Edison T, Lee YR (2016) Nitrogen-doped carbon dots originating from unripe peach for fluorescent bioimaging and electrocatalytic oxygen reduction reaction. J Colloid Interface Sci 482:8–18

    Article  CAS  PubMed  Google Scholar 

  31. Guo D, Wei H-F, Song R-B, Fu J, Lu X, Jelinek R, Min Q, Zhang J-R, Zhang Q, Zhu J-J (2019) N, S-doped carbon dots as dual-functional modifiers to boost bio-electricity generation of individually-modified bacterial cells. Nano Energy 63:103875

    Article  CAS  Google Scholar 

  32. Zhou D, Di L, Jing PT, Zhai YC, Shen DH, Qu SN, Rogach AL (2017) Conquering aggregation-induced solid-state luminescence quenching of carbon dots through a carbon dots-triggered silica gelation process. Chem Mat 29(4):1779–1787

    Article  CAS  Google Scholar 

  33. Li B, Suo T, Xie S, Xia A, Ma Y-j, Huang H, Zhang X, Hu Q (2021) Rational design, synthesis, and applications of carbon dots@metal–organic frameworks (CD@MOF) based sensors. TrAC Trends in Analytical Chemistry 135:116163

    Article  CAS  Google Scholar 

  34. Li BZ, Suo TY, Xie SY, Xia AQ, Ma YJ, Huang H, Zhang X, Hu Q (2021) Rational design, synthesis, and applications of carbon dots@metal-organic frameworks (CD@MOF) based sensors. Trac-Trends Anal Chem 135:12

    Article  Google Scholar 

  35. Fan C, Lv XX, Liu FJ, Feng LP, Liu M, Cai YY, Liu H, Wang JY, Yang YL, Wang H (2018) Silver nanoclusters encapsulated into metal-organic frameworks with enhanced fluorescence and specific ion accumulation toward the microdot array-based fluorimetric analysis of copper in blood. ACS Sens 3(2):441–450

    Article  CAS  PubMed  Google Scholar 

  36. Jalili R, Khataee A, Rashidi MR, Luque R (2019) Dual-colored carbon dot encapsulated metal-organic framework for ratiometric detection of glutathione. Sens Actuator B-Chem 297:8

    Article  Google Scholar 

  37. Wu TT, Ma ZY, Li PP, Liu ML, Liu XY, Li HT, Zhang YY, Yao SZ (2019) Colorimetric detection of ascorbic acid and alkaline phosphatase activity based on the novel oxidase mimetic of Fe-Co bimetallic alloy encapsulated porous carbon nanocages. Talanta 202:354–361

    Article  CAS  PubMed  Google Scholar 

  38. Hu XY, Zeng XK, Liu Y, Lu J, Zhang XW (2020) Carbon-based materials for photo and electrocatalytic synthesis of hydrogen peroxide. Nanoscale 12(30):16008–16027

    Article  CAS  PubMed  Google Scholar 

  39. Wang K, Ren HL, Li N, Tan XY, Dang FQ (2018) Ratiometric fluorescence sensor based on cholesterol oxidase-functionalized mesoporous silica nanoparticle@ZIF-8 core-shell nanocomposites for detection of cholesterol. Talanta 188:708–713

    Article  CAS  PubMed  Google Scholar 

  40. Guo L, Liu Y, Qu FL, Liu Z, Kong RM, Chen G, Fan WJ, Xia L (2019) Luminescent metal organic frameworks with recognition sites for detection of hypochlorite through energy transfer. Microchim Acta 186(11):8

    Article  Google Scholar 

  41. Chattopadhyay S, Bhar K, Khan S, Mitra P, Butcher RJ, Ghosh BK (2010) Synthesis, structure and luminescence behaviour of bis(tridentate) Schiff base bridged dinuclear lead(II) pseudohalides. J Mol Struct 966(1–3):102–106

    Article  CAS  Google Scholar 

  42. Dhanunjayarao K, Mukundam V, Venkatasubbaiah K (2016) Tetracoordinate imidazole-based boron complexes for the selective detection of picric acid. Inorg Chem 55(21):11153–11159

    Article  CAS  PubMed  Google Scholar 

  43. Hu ZC, Lustig WP, Zhang JM, Zheng C, Wang H, Teat SJ, Gong QH, Rudd ND, Li J (2015) Effective detection of mycotoxins by a highly luminescent metal-organic framework. J Am Chem Soc 137(51):16209–16215

    Article  CAS  PubMed  Google Scholar 

  44. Yang D, Mei SL, Wen ZQ, Wei X, Cui ZJ, Yang BB, Wei C, Qiu Y, Li M, Li H, Zhang WL, Xie FX, Wang L, Guo RQ (2020) Dual-emission of silicon nanoparticles encapsulated lanthanide-based metal-organic frameworks for ratiometric fluorescence detection of bacterial spores. Microchim Acta 187(12):9

    Article  Google Scholar 

  45. Xu L, Fang G, Liu J, Pan M, Wang R, Wang S (2016) One-pot synthesis of nanoscale carbon dots-embedded metal–organic frameworks at room temperature for enhanced chemical sensing. J Mater Chem A 4(41):15880–15887

    Article  CAS  Google Scholar 

  46. Tan H, Wu X, Weng Y, Lu Y, Huang ZZ (2020) Self-assembled FRET nanoprobe with metal-organic framework as a scaffold for ratiometric detection of hypochlorous acid. Anal Chem 92(4):3447–3454

    Article  CAS  PubMed  Google Scholar 

  47. Guo XP, Pan QW, Song XQ, Guo QY, Zhou SX, Qiu JR, Dong GP (2021) Embedding carbon dots in Eu3+-doped metal-organic framework for label-free ratiometric fluorescence detection of Fe3+ ions. J Am Ceram Soc 104(2):886–895

    Article  CAS  Google Scholar 

  48. Fu X, Lv R, Su J, Li H, Yang B, Gu W, Liu X (2018) A dual-emission nano-rod MOF equipped with carbon dots for visual detection of doxycycline and sensitive sensing of MnO4. RSC Adv 8(9):4766–4772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liedana N, Galve A, Rubio C, Tellez C, Coronas J (2012) CAF@ZIF-8: one-step encapsulation of caffeine in MOF. ACS Appl Mater Interfaces 4(9):5016–5021

    Article  CAS  PubMed  Google Scholar 

  50. Zhang T, Zhang X, Yan X, Kong L, Zhang G, Liu H, Qiu J, Yeung KL (2013) Synthesis of Fe3O4@ZIF-8 magnetic core-shell microspheres and their potential application in a capillary microreactor. Chem Eng J 228:398–404

    Article  CAS  Google Scholar 

  51. Moon HR, Kim JH, Suh MP (2005) Redox-active porous metal-organic framework producing silver nanoparticles from AgI Ions at room temperature. Angew Chem 117(8):1287–1291

    Article  Google Scholar 

  52. Müller M, Lebedev OI, Fischer RA (2008) Gas-phase loading of [Zn4O(btb)2] (MOF-177) with organometallic CVD-precursors: inclusion compounds of the type [LnM]a@MOF-177 and the formation of Cu and Pd nanoparticles inside MOF-177. J Mater Chem 18(43):5274

    Article  Google Scholar 

  53. Guo H, Zhang Y, Zheng Z, Lin H, Zhang Y (2017) Facile one-pot fabrication of Ag@MOF(Ag) nanocomposites for highly selective detection of 2,4,6-trinitrophenol in aqueous phase. Talanta 170:146–151

    Article  CAS  PubMed  Google Scholar 

  54. Yan AX, Yao S, Li YG, Zhang ZM, Lu Y, Chen WL, Wang EB (2014) Incorporating polyoxometalates into a porous MOF greatly improves its selective adsorption of cationic dyes. Chemistry 20(23):6927–6933

    Article  CAS  PubMed  Google Scholar 

  55. Li ZQ, Wang A, Guo CY, Tai YF, Qiu LG (2013) One-pot synthesis of metal-organic framework@SiO2 core-shell nanoparticles with enhanced visible-light photoactivity. Dalton Trans 42(38):13948–13954

    Article  CAS  PubMed  Google Scholar 

  56. Wu T, Zhang P, Ma J, Fan H, Wang W, Jiang T, Han B (2013) Catalytic activity of immobilized Ru nanoparticles in a porous metal-organic framework using supercritical fluid. Chin J Catal 34(1):167–175

    Article  CAS  Google Scholar 

  57. Chen L, Chen H, Luque R, Li Y (2014) Metal−organic framework encapsulated Pd nanoparticles: towards advanced heterogeneous catalysts. Chem Sci 5(10):3708–3714

    Article  CAS  Google Scholar 

  58. Wu JX, Yan B (2017) Visible detection of copper ions using a fluorescent probe based on red carbon dots and zirconium metal-organic frameworks. Dalton Trans 46(43):15080–15086

    Article  CAS  PubMed  Google Scholar 

  59. Tao Y, Jiang Y, Huang Y, Liu J, Zhang P, Chen X, Fan Y, Wang L, Xu J (2021) Carbon dots@metal–organic frameworks as dual-functional fluorescent sensors for Fe3+ ions and nitro explosives. CrystEngComm 23(22):4038–4049

    Article  CAS  Google Scholar 

  60. Gao Y, Hilbers M, Zhang H (2019) Tanase S (2019) Designed synthesis of multiluminescent materials using lanthanide metal-organic frameworks and carbon dots as building-blocks. Eur J Inorg Chem 35:3925–3932

    Article  Google Scholar 

  61. Feng S, Pei F, Wu Y, Lv J, Hao Q, Yang T, Tong Z, Lei W (2021) A ratiometric fluorescent sensor based on g-CNQDs@Zn-MOF for the sensitive detection of riboflavin via FRET. Spectrochim Acta A Mol Biomol Spectrosc 246:119004

    Article  CAS  PubMed  Google Scholar 

  62. Yi K, Zhang X, Zhang L (2020) Eu3+@metal-organic frameworks encapsulating carbon dots as ratiometric fluorescent probes for rapid recognition of anthrax spore biomarker. Sci Total Environ 743:140692

    Article  CAS  PubMed  Google Scholar 

  63. Guo H, Wang X, Wu N, Xu M, Wang M, Zhang L, Yang W (2021) In-situ synthesis of carbon dots-embedded europium metal-organic frameworks for ratiometric fluorescence detection of Hg2+ in aqueous environment. Anal Chim Acta 1141:13–20

    Article  CAS  PubMed  Google Scholar 

  64. Wu JX, Yan B (2017) A dual-emission probe to detect moisture and water in organic solvents based on green-Tb3+ post-coordinated metal-organic frameworks with red carbon dots. Dalton Trans 46(21):7098–7105

    Article  CAS  PubMed  Google Scholar 

  65. Bunzli JCG (2006) Benefiting from the unique properties of lanthanide ions. Accounts Chem Res 39(1):53–61

    Article  CAS  Google Scholar 

  66. Qin S-J, Yan B (2018) Dual-emissive ratiometric fluorescent probe based on Eu3+/C-dots@MOF hybrids for the biomarker diaminotoluene sensing. Sens Actuators, B Chem 272:510–517

    Article  CAS  Google Scholar 

  67. Yang J-M, Hu X-W, Liu Y-X, Zhang W (2019) Fabrication of a carbon quantum dots-immobilized zirconium-based metal-organic framework composite fluorescence sensor for highly sensitive detection of 4-nitrophenol. Microporous Mesoporous Mater 274:149–154

    Article  CAS  Google Scholar 

  68. Guo H, Wang X, Wu N, Xu M, Wang M, Zhang L, Yang W (2020) One-pot synthesis of a carbon dots@zeolitic imidazolate framework-8 composite for enhanced Cu2+ sensing. Anal Methods 12(32):4058–4063

    Article  CAS  PubMed  Google Scholar 

  69. Dong Y, Cai J, Fang Q, You X, Chi Y (2016) Dual-emission of lanthanide metal-organic frameworks encapsulating carbon-based dots for ratiometric detection of water in organic solvents. Anal Chem 88(3):1748–1752

    Article  CAS  PubMed  Google Scholar 

  70. Gao JP, Yao RX, Chen XH, Li HH, Zhang C, Zhang FQ, Zhang XM (2021) Blue luminescent N, S-doped carbon dots encapsulated in red emissive Eu-MOF to form dually emissive composite for reversible anti-counterfeit ink. Dalton Trans 50(5):1690–1696

    Article  CAS  PubMed  Google Scholar 

  71. Zhang Y, Zhou K, Qiu Y, Xia L, Xia Z, Zhang K, Fu Q (2021) Strongly emissive formamide-derived N-doped carbon dots embedded Eu(III)-based metal-organic frameworks as a ratiometric fluorescent probe for ultrasensitive and visual quantitative detection of Ag+. Sensors and Actuators B: Chemical 339:129922

    Article  CAS  Google Scholar 

  72. Xu X-Y, Yan B (2016) Fabrication and application of a ratiometric and colorimetric fluorescent probe for Hg2+ based on dual-emissive metal–organic framework hybrids with carbon dots and Eu3+. J Mater Chem C 4(7):1543–1549

    Article  CAS  Google Scholar 

  73. Xu XY, Yan B (2016) Fabrication and application of a ratiometric and colorimetric fluorescent probe for Hg2+ based on dual-emissive metal-organic framework hybrids with carbon dots and Eu3+. J Mater Chem C 4(7):1543–1549

    Article  CAS  Google Scholar 

  74. Li AL, Xiong J, Liu Y, Wang LM, Qin XH, Yu JY (2022) Fiber-intercepting-particle structured MOF fabrics for simultaneous solar vapor generation and organic pollutant adsorption. Chem Eng J 428:8

    Article  Google Scholar 

  75. Zhang M, Ye S, Wang J, Yu K, Cao JG, Li GB, Liao XY (2021) In situ growth zeolite imidazole framework materials on chitosan for greatly enhanced antibacterial effect. Int J Biol Macromol 186:639–648

    Article  CAS  PubMed  Google Scholar 

  76. Jalili R, Khataee A, Rashidi M-R, Luque R (2019) Dual-colored carbon dot encapsulated metal-organic framework for ratiometric detection of glutathione. Sensors Actuators B: Chem 297:126775

    Article  CAS  Google Scholar 

  77. Ma YS, Wang Y, Liu YJ, Shi LJ, Yang DZ (2021) Multi-carbon dots and aptamer based signal amplification ratiometric fluorescence probe for protein tyrosine kinase 7 detection. J Nanobiotechnol 19(1):11

    Article  Google Scholar 

  78. Faraji M, Yamini Y, Rezaee M (2010) Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. J Iran Chem Soc 7(1):1–37

    Article  CAS  Google Scholar 

  79. Asadi F, Azizi SN, Chaichi MJ (2019) Green synthesis of fluorescent PEG-ZnS QDs encapsulated into Co-MOFs as an effective sensor for ultrasensitive detection of copper ions in tap water. Mater Sci Eng C Mater Biol Appl 105:110058

    Article  CAS  PubMed  Google Scholar 

  80. Li HH, Fu B, Yang WT, Ding L, Yang Y, Dong JX, Wang FX, Pan QH (2020) A recyclable fluorescent probe for picric acid detection in water samples based on inner filter effect. Spectroc Acta Pt A-Molec Biomolec Spectr 226:7

    Article  Google Scholar 

  81. Hao J, Liu F, Liu N, Zeng M, Song Y, Wang L (2017) Ratiometric fluorescent detection of Cu2+ with carbon dots chelated Eu-based metal-organic frameworks. Sens Actuators, B Chem 245:641–647

    Article  CAS  Google Scholar 

  82. Yao C, Xu Y, Xia Z (2018) A carbon dot-encapsulated UiO-type metal organic framework as a multifunctional fluorescent sensor for temperature, metal ion and pH detection. J Mater Chem C 6(16):4396–4399

    Article  CAS  Google Scholar 

  83. Bao J, Mei J, Cheng X, Ren D, Xu G, Wei F, Sun Y, Hu Q, Cen Y (2021) A ratiometric lanthanide-free fluorescent probe based on two-dimensional metal-organic frameworks and carbon dots for the determination of anthrax biomarker. Mikrochim Acta 188(3):84

    Article  CAS  PubMed  Google Scholar 

  84. Bera MK, Behera L, Mohapatra S (2021) A fluorescence turn-down-up detection of Cu2+ and pesticide quinalphos using carbon quantum dot integrated UiO-66-NH2. Colloids Surf A: Physicochem Eng Asp 624:126792

    Article  CAS  Google Scholar 

  85. Yang J, Ye H, Zhao F, Zeng B (2016) A novel CuxO nanoparticles@ZIF-8 composite derived from core-shell metal-organic frameworks for highly selective electrochemical sensing of hydrogen peroxide. ACS Appl Mater Interfaces 8(31):20407–20414

    Article  CAS  PubMed  Google Scholar 

  86. Samadi-Maybodi A, Ghasemi S, Ghaffari-Rad H (2015) Ag-doped zeolitic imidazolate framework-8 nanoparticles modified CPE for efficient electrocatalytic reduction of H2O2. Electrochim Acta 163:280–287

    Article  CAS  Google Scholar 

  87. Drobek M, Kim JH, Bechelany M, Vallicari C, Julbe A, Kim SS (2016) MOF-based membrane encapsulated ZnO nanowires for enhanced gas sensor selectivity. ACS Appl Mater Interfaces 8(13):8323–8328

    Article  CAS  PubMed  Google Scholar 

  88. Lin X, Gao G, Zheng L, Chi Y, Chen G (2014) Encapsulation of strongly fluorescent carbon quantum dots in metal-organic frameworks for enhancing chemical sensing. Anal Chem 86(2):1223–1228

    Article  CAS  PubMed  Google Scholar 

  89. Lyu F, Zhang Y, Zare RN, Ge J, Liu Z (2014) One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities. Nano Lett 14(10):5761–5765

    Article  CAS  PubMed  Google Scholar 

  90. Wu YZ, Ma YJ, Xu GH, Wei FD, Ma YS, Song Q, Wang X, Tang T, Song YY, Shi ML, Xu XM, Hu Q (2017) Metal-organic framework coated Fe3O4 magnetic nanoparticles with peroxidase-like activity for colorimetric sensing of cholesterol. Sens Actuator B-Chem 249:195–202

    Article  CAS  Google Scholar 

  91. Li J-S, Tang Y-J, Li S-L, Zhang S-R, Dai Z-H, Si L, Lan Y-Q (2015) Carbon nanodots functional MOFs composites by a stepwise synthetic approach: enhanced H2 storage and fluorescent sensing. CrystEngComm 17(5):1080–1085

    Article  CAS  Google Scholar 

  92. Ma Y, Xu G, Wei F, Cen Y, Ma Y, Song Y, Xu X, Shi M, Muhammad S, Hu Q (2017) A dual-emissive fluorescent sensor fabricated by encapsulating quantum dots and carbon dots into metal–organic frameworks for the ratiometric detection of Cu2+ in tap water. J Mater Chem C 5(33):8566–8571

    Article  CAS  Google Scholar 

  93. Feng JF, Gao SY, Shi J, Liu TF, Cao R (2018) C-QDs@UiO-66-(COOH)2 Composite film via electrophoretic deposition for temperature sensing. Inorg Chem 57(5):2447–2454

    Article  CAS  PubMed  Google Scholar 

  94. Gu C, Guo C, Li Z, Wang M, Zhou N, He L, Zhang Z, Du M (2019) Bimetallic ZrHf-based metal-organic framework embedded with carbon dots: ultra-sensitive platform for early diagnosis of HER2 and HER2-overexpressed living cancer cells. Biosens Bioelectron 134:8–15

    Article  CAS  PubMed  Google Scholar 

  95. Xu L, Pan M, Fang G, Wang S (2019) Carbon dots embedded metal-organic framework@molecularly imprinted nanoparticles for highly sensitive and selective detection of quercetin. Sens Actuators, B Chem 286:321–327

    Article  CAS  Google Scholar 

  96. Wang Y, He J, Zheng M, Qin M, Wei W (2019) Dual-emission of Eu based metal-organic frameworks hybrids with carbon dots for ratiometric fluorescent detection of Cr(VI). Talanta 191:519–525

    Article  CAS  PubMed  Google Scholar 

  97. Jin K, Ji X, Yang T, Zhang J, Tian W, Yu J, Zhang X, Chen Z, Zhang J (2021) Facile access to photo-switchable, dynamic-optical, multi-colored and solid-state materials from carbon dots and cellulose for photo-rewritable paper and advanced anti-counterfeiting. Chem Eng J 406:126794

    Article  CAS  Google Scholar 

  98. Ma Y, Xu G, Wei F, Cen Y, Xu X, Shi M, Cheng X, Chai Y, Sohail M, Hu Q (2018) One-pot synthesis of a magnetic, ratiometric fluorescent nanoprobe by encapsulating Fe3O4 magnetic nanoparticles and dual-emissive rhodamine B modified carbon dots in metal-organic framework for enhanced HClO sensing. ACS Appl Mater Interfaces 10(24):20801–20805

    Article  CAS  PubMed  Google Scholar 

  99. Ma C, Li P, Xia L, Qu F, Kong R-M, Song Z-L (2021) A novel ratiometric fluorescence nanoprobe for sensitive determination of uric acid based on CD@ZIF-CuNC nanocomposites. Microchimica Acta 188(8):259

    Article  CAS  PubMed  Google Scholar 

  100. Wang Y, Wang B, Shi H, Zhang C, Tao C, Li J (2018) Carbon nanodots in ZIF-8: synthesis, tunable luminescence and temperature sensing. Inorganic Chemistry Frontiers 5(11):2739–2745

    Article  CAS  Google Scholar 

  101. Riad HR, Mohammad AH, Md NU, Alam M, Abdullah MA, Mohammed MR, Iqbal AS (2019) Fabrication of a 3,4-diaminotoluene sensor based on a TiO2-Al2O3 nanocomposite synthesized by a fast and facile microwave irradiation method. ChemistrySelect 4(43):12592–12600

    Article  Google Scholar 

  102. Mohammed MR, Alam MM, Abdullah MA, Islam MA (2017) 3,4-Diaminotoluene sensor development based on hydrothermally prepared MnCoxOy nanoparticles. Talanta 176:17–25

    Google Scholar 

  103. Vinod KG, Ashok KS, Sameena M, Barkha G (2006) A cobalt(II)-selective PVC membrane based on a Schiff base complex of N, N’-bis(salicylidene)-3,4-diaminotoluene. Anal Chim Acta 566(1):5–10

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Analytical & Testing Center of Tiangong University for work.

Funding

The work was supported by the National Natural Science Foundation of China (51678409), Tianjin Research Program of Application Foundation and Advanced Technology of China (19JCYBJC19800), State Key Laboratory of Separation Membranes and Membrane Processes (Z1-201507), and the Program for Innovative Research Team in University of Tianjin (TD13-5042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanyong Yan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, F., Wang, X., Wang, Y. et al. Sensing performance and mechanism of carbon dots encapsulated into metal–organic frameworks. Microchim Acta 189, 379 (2022). https://doi.org/10.1007/s00604-022-05481-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05481-5

Keywords

Navigation