Skip to main content
Log in

Cytochemistry of pollen development in Brachypodium distachyon

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Brachypodium distachyon is a widely recognized model plant belonging to subfamily Pooideae with a sequenced genome. To gain a better understanding of the male reproductive development in B. distachyon we examined pollen morphology and cytochemical changes of microspore cytoplasm from pollen mother cell stage to mature pollen using light, fluorescent and scanning electron microscopy. Our results show that B. distachyon exhibits a typical monocot-type pollen ontogeny. Meiosis in the pollen mother cells is accomplished by successive cytokinesis generating isobilateral tetrads. Cytochemical examination indicated that microspore cytoplasm contains variable amounts of insoluble carbohydrates and proteins at different developmental stages. Deposition of starch in the cytoplasm of microspores starts at the bicellular stage and continues till the mature pollen stage. The formation of the exine wall progresses by the deposition of sporopollenin from the tapetum layer of the anther. The mature pollen is trinucleate, spheroidal in shape and possesses a single pore with an annulus and operculum. The exine pattern is smooth and of granular type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alves SC, Worland B, Thole V, Snape JW, Bewan MW, Vain P (2009) A protocol for Agrobacterium-mediated transformation of Brachypodium distachyon community standard line Bd21. Nat Protoc 4:638–649

    Article  CAS  PubMed  Google Scholar 

  • Bedinger P (1992) The remarkable biology of pollen. Plant Cell 4:879–887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Charzynska M, Lenart N (1989) Pollen grain of barley (Hordeum vulgare L.), pattern of development. Acta Soc Bot Pol 58(3):313–320

    Article  Google Scholar 

  • Chaturvedi M, Datta K, Nair PKK (1998) Pollen morphology of Oryza (Poaceae). Grana 37(2):79–86. doi:10.1080/00173139809362647

    Article  Google Scholar 

  • Chen HN, Zhao CH, Liu XR (2012) Pollen development of Cardiocrinum giganteum (Wall.) Makina in China. Plant Syst Evol 298:1557–1565

    Article  Google Scholar 

  • Christensen JE, Horner HT Jr, Lersten NR (1972) Pollen wall and tapetal orbicular wall development in Sorghum bicolor (Gramineae). Am J Bot 59:43–58

    Article  Google Scholar 

  • Draper J, Mur LA, Jenkins G, Ghosh-Biswas GC, Bablak P, Hasterok R, Routledge AP (2001) Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol 127:1539–1555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • El-Ghazaly G, Jensen WA (1986) Studies of the development of wheat (Triticum aestivum) pollen. I. Formation of the pollen grain wall. J Cell Sci 5:459–477

    Google Scholar 

  • Eliseu SA, Dinis AM (2008) Ultrastructure and cytochemistry of Eucalyptus globulus (Myrtaceae) pollen grain. Grana 47(1):39–51

    Article  Google Scholar 

  • Garvin DF, Gu YQ, Hasterok R, Hazen SP, Jenkins G, Mockler TC, Mur LAJ, Vogel JP (2008) Development of genetic and genomic research resources for Brachypodium distachyon, a new model system for grass crop research. Crop Sci 48:S69–S84

    Article  Google Scholar 

  • Goss JA (1968) Development, physiology and biochemistry of corn and wheat pollen. Bot Rev 34:333–358

    Article  CAS  Google Scholar 

  • Halac ND, Cismondi IA, Rodriguez-Garcia MI, Fama G (2003) Distribution of pectins in the pollen apertures of Oenothera hookeri.velans ster/+ster. Biocell 27(1):11–18

    Google Scholar 

  • Heslop-Harrison J (1963) An ultrastructural study of pollen wall ontogeny in Silene pendula. Grana Palynologica 4(1):7–24

    Article  Google Scholar 

  • Heslop-Harrison J (1979) Aspects of the structure, cytochemistry and germination of the pollen of rye (Secale cereale L.). Ann Bot 44:1–47

    Article  Google Scholar 

  • Heslop-Harrison J, Dickinson HG (1969) Time relationships of sporopollenin synthesis associated with tapetum and microspores in Lilium. Planta 84:199–214

    Article  CAS  PubMed  Google Scholar 

  • Hesse M (1986) Orbicules and the ektexine are homologous sporopollenin concretions in Spermatophyta. Plant Syst Evol 153:37–48

    Article  CAS  Google Scholar 

  • Hong SY, Park JH, Cho SH, Yang MS, Park CM (2011) Phenological growth stages of Brachypodium distachyon: codification and description. Weed Res. doi:10.1111/j.1365-3180.2011.00877.x

    Google Scholar 

  • International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  • Itoh J, Nonomura K, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano H, Nagato Y (2005) Rice plant development: from zygote to spikelet. Plant Cell Physiol 46:23–47

    Article  CAS  PubMed  Google Scholar 

  • Keijzer CJ (1987) The process of anther dehiscence and pollen dispersal. II. The formation and the transfer mechanism of pollenkitt, cell wall development of the loculus tissues and the function of orbiculus in pollen dispersal. New Phytol 105:499–500

    Article  Google Scholar 

  • Mizelle MB, Sethi R, Ashton ME, Jensen WA (1989) Development of the pollen grain and tapetum of wheat (Triticum aestivum) in untreated plants and plants treated with chemical hybridizing agent RH0007. Sex Plant Reprod 2:231–253

    Article  Google Scholar 

  • Nakamura AT, Longhi-Wagner HM, Scatena VL (2010) Anther and pollen development in some species of Poaceae (Poales). Braz J Biol 70(2):351–360

    Article  CAS  PubMed  Google Scholar 

  • Opanowicz M, Vain P, Draper J, Parker D, Doonan JH (2008) Brachypodium distachyon: making hay with a wild grass. Trends Plant Sci 13:172–177

    Article  CAS  PubMed  Google Scholar 

  • Pacini E, Franchi GG, Hesse M (1985) The tapetum: its form, function, and possible phylogeny in Embryophyta. Plant Syst Evol 149:155–185

    Article  Google Scholar 

  • Pigman W (2012) The carbohydrates: chemistry and biochemistry, 2nd edn. Elsevier, New York

    Google Scholar 

  • Raghavan V (1988) Anther and pollen development in rice (Oryza sativa). Am J Bot 75:183–196

    Article  Google Scholar 

  • Rodriguez-Garcia MI, M’Rani-Alaoui M, Fernandez MC (2003) Behavior of storage lipids during development and germination of olive (Olea europaea L.) pollen. Protoplasma 221:237–244

    CAS  PubMed  Google Scholar 

  • Saini HS, Sedgley M, Aspinall D (1984) Developmental anatomy in wheat of male sterility induced by heat stress, water deficit or abscisic acid. Aust J Plant Physiol 11:243–253

    Article  Google Scholar 

  • Skvarla JJ, Larson DA (1966) Fine structural studies of Zea mays pollen. I. Cell membranes and exine ontogeny. Am J Bot 53:1112–1125

    Article  Google Scholar 

  • Steiglitz H (1977) Role of β-1,3-glucanase in postmeiotic microspore release. Dev Biol 57:87–97

    Article  Google Scholar 

  • Tütüncü Konyar S, Dane F (2012) Cytochemistry of pollen development in Campsis radicans (L.) Seem. (Bignoniaceae). Plant Syst Evol 299(1):87–95

    Article  Google Scholar 

  • Tütüncü Konyar S, Dane F, Tütüncü S (2013) Distribution of insoluble polysaccharides, neutral lipids and proteins in the developing anthers of Campsis radicans (L.) Seem. (Bignoniaceae). Plant Syst Evol 299(4):743–760

    Article  Google Scholar 

  • Vain P (2011) Brachypodium as a model system for grass research. J Cereal Sci 54:1–7

    Article  Google Scholar 

  • Vithanage HIMV, Knox RB (1980) Periodicity of pollen development and quantitative cytochemistry of exine and intine enzymes in the grasses Lolium perenne L. and Phalaris tuberosa L. Ann Bot 45:131–141

    CAS  Google Scholar 

  • Vogel J, Hill T (2008) High-efficiency Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21-3. Plant Cell Rep 27:471–478

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Wilson ZA (2009) Stamen specification and anther development in rice. Chin Sci Bull 54:2342–2353

    Article  CAS  Google Scholar 

  • Zhang D, Luo X, Lu Z (2011) Cytological analysis and genetic control of rice anther development. J Genet Genomics 38:379–390

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Simon Crawford for technical guidance and access to Advanced Microscopy Facility, The University of Melbourne. Author; AS, also thanks Dr. Martin O’Brien for giving valuable suggestions. Financial support from the Australian Research Council (ARC DPO988972) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem L. Bhalla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, A., Singh, M.B. & Bhalla, P.L. Cytochemistry of pollen development in Brachypodium distachyon . Plant Syst Evol 300, 1639–1648 (2014). https://doi.org/10.1007/s00606-014-0989-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-014-0989-9

Keywords

Navigation