Skip to main content
Log in

Incongruent patterns of nuclear and chloroplast variation in Correa (Rutaceae): introgression and biogeography in south-eastern Australia

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Correa (family Rutaceae) is a genus endemic to southern Australia, in which chloroplast introgression between species has previously been inferred. The current study aimed to document the extent of incongruence between molecular markers and taxonomy, describe patterns of geographic variation, and infer genetic and biogeographic processes important in the history of the genus. Sampling focused on subg. Correa (nine species) and included 166 samples from 95 localities. Samples were genotyped at the chloroplast loci trnL-trnF and trnK and the nuclear ITS regions, either by direct sequencing or by restriction digests of PCR products. Both chloroplast and ITS datasets resolved subg. Persistens (two species mostly from wet forests) as distinct from those of subg. Correa. Within subg. Correa chloroplast and ITS lineages were largely incongruent with each other and with current taxonomy, but both datasets showed similar geographic patterns. In each dataset there was one lineage mostly restricted to western South Australia and Western Australia, and one lineage widespread in eastern South Australia, Victoria, Tasmania, New South Wales and Queensland. The split between these geographic lineages occurs in South Australia, on the western side of the Murray basin; it is sharply defined in the chloroplast results, whereas the distributions of ITS lineages overlap. The geographic patterns and incongruence exhibited by both ITS and chloroplast markers provide evidence for substantial chloroplast and nuclear introgression between species. Geographic distributions of genetic lineages are consistent with divergence caused by a historical vicariance event across the lower Murray basin and subsequent reconnection of populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Álvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Molec Phylogenet Evol 29:417–434

    Article  PubMed  Google Scholar 

  • Anderson RJ (1983) Variation and evolution in Correa (Rutaceae). PhD Thesis, La Trobe University, Melbourne

  • Anderson RJ (1986) Correa. In: Jessop JP, Toelken HR (eds) Flora of South Australia, vol 3. South Australian Government Printing Division, Adelaide, pp 771–777

    Google Scholar 

  • Ashby E (1939) Review of the South Australian representatives of the genus Correa, with descriptions of three new species. Proc Linn Soc London 151:214–221

    Article  Google Scholar 

  • Avise JC (1989) Gene trees and organismal histories—a phylogenetic approach to population biology. Evolution 43:1192–1208

    Article  Google Scholar 

  • Avise JC (2004) Molecular markers, natural history, and evolution. Sinauer Associates, Sunderland

    Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Molec Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Barrett RA, Bayly MJ, Duretto MF, Forster PI, Ladiges PY, Cantrill DJ (2015) A chloroplast phylogeny of Zieria (Rutaceae) in Australia and New Caledonia shows widespread incongruence with species-level taxonomy. Austral Syst Bot 27:427–449

    Article  Google Scholar 

  • Bayly MJ, Udovicic F, Gibbs AK, Parra-O C, Ladiges PY (2008) Ribosomal DNA pseudogenes are widespread in the eucalypt group (Myrtaceae): implications for phylogenetic analysis. Cladistics 24:131–146

    Article  Google Scholar 

  • Bayly MJ, Holmes GD, Forster PI, Cantrill DJ, Ladiges PY (2013) Major clades of Australian Rutoideae (Rutaceae) based on rbcL and atpB sequences. PLOS One 8:e72493. doi:10.1371/journal.pone.0072493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentham G (1863) Flora Australiensis: a description of the plants of the Australian territory. Lovell Reed and Co, London

    Google Scholar 

  • Birky CW Jr (1983) An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts, and some results. Genetics 103:513–527

    PubMed  PubMed Central  Google Scholar 

  • Black JM (1933) Flora of South Australia. Government Printer, Adelaide

    Google Scholar 

  • Boardman R (1986) The history and evolution of South Australia’s forests and woodlands. In: Wallace HR (ed) The ecology of the forests and woodlands of South Australia. Government Printer, Adelaide, pp 16–31

    Google Scholar 

  • Bowler JM (1980) Quaternary chronology and palaeohydrology in the evolution of mallee landscapes. In: Storrier RR, Stannard MM (eds) Aeolian landscapes in the semi–arid zone of southeastern Australia. Riverina Society of Soil Science, Wagga Wagga, pp 17–36

    Google Scholar 

  • Burger WC (1975) The species concept in Quercus. Taxon 24:45–50

    Article  Google Scholar 

  • Byrne M (2008) Evidence for multiple refugia at different time scales during Pleistocene climatic oscillations in southern Australia inferred from phylogeography. Quaternary Sci Rev 27:2576–2585

    Article  Google Scholar 

  • Byrne M, Yeates DK, Joseph L, Kearney M, Bowler J, Williams MAJ, Cooper S, Donnellan SC, Keogh JS, Leys R, Melville J, Murphy DJ, Porch N, Wyrwoll KH (2008) Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molec Ecol 17:4398–4417

    Article  CAS  Google Scholar 

  • Cassens I, Mardulyn P, Milinkovitch MC (2005) Evaluating intraspecific “network” construction methods using simulated sequence data: do existing algorithms outperform the global maximum parsimony approach? Syst Biol 54:363–372

    Article  PubMed  Google Scholar 

  • Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. Molec Ecol 9:1657–1963

    Article  CAS  Google Scholar 

  • Cook EJ (2009) A record of late Quaternary environments at lunette-lakes Bolac and Turangmoroke, western Victoria, Australia, based on pollen and a range of non-pollen palynomorphs. Rev Palaeobot Palynol 153:185–224

    Article  Google Scholar 

  • Costermans L (1981) Native trees and shrubs of south-eastern Australia. Weldon Publishing, Sydney

    Google Scholar 

  • Crisp MD, Linder HP, Weston PH (1995) Cladistic biogeography of plants in Australia and New Guinea: congruent pattern reveals two endemic tropical tracks. Syst Biol 44:457–473

    Article  Google Scholar 

  • Currat M, Ruedi M, Petit R, Excoffier L (2008) The hidden side of invasions: massive introgression by local genes. Evolution 62:1908–1920

    PubMed  Google Scholar 

  • Després L, Gielly L, Redoutet B, Taberlet P (2003) Using AFLP to resolve phylogenetic relationships in a morphologically diversified plant species complex when nuclear and chloroplast sequences fail to reveal variability. Molec Phylogenet Evol 27:185–196

    Article  PubMed  Google Scholar 

  • Dodson JR, Ono Y (1997) Timing of late Quaternary vegetation response in the 30–50° latitude bands in southeastern Australia and northeastern Asia. Quaternary Int 37:89–104

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Duretto MF (1999) Rutaceae. In: Walsh NG, Entwisle TJ (eds) Flora of Victoria, vol 4. Inkata Press, Melbourne, pp 153–197

    Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLOS One 6(5):e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engler A (1931) Rutaceae. In: Engler A, Harms H (eds) Die Naturlichen Pflanzenfamilien, vol 19a. Wilhelm Engelmann, Leipzig, pp 187–358

    Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  PubMed Central  Google Scholar 

  • Feliner GN, Rossellò JA (2007) Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Molec Phylogenet Evol 44:911–919

    Article  Google Scholar 

  • Ferris C, Oliver RP, Davy AJ, Hewitt GM (1993) Native oak chloroplasts reveal an ancient divide across Europe. Molec Ecol 2:337–343

    Article  CAS  Google Scholar 

  • Freeman JS, Jackson HD, Steane DA, McKinnon GE, Dutkowski GW, Potts B, Vaillancourt R (2001) Chloroplast DNA phylogeography of Eucalyptus globulus. Austral J Bot 49:585–596

    Article  CAS  Google Scholar 

  • Gibbs MJ, Armstrong JS, Gibbs AJ (2000) Sister-Scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinform 16:573–582

    Article  CAS  Google Scholar 

  • Grant V (1981) Plant speciation. Columbia University Press, New York

    Google Scholar 

  • Grivet D (2002) Phylogeography of the common ivy (Hedera sp.) in Europe: genetic differentiation through space and time. Molec Ecol 11:1351–1362

    Article  CAS  Google Scholar 

  • Groppo M, Pirani JR, Salatino MLF, Blanco SR, Kallunki JA (2008) Phylogeny of Rutaceae based on two noncoding regions from cpDNA. Amer J Bot 95:985–1005

    Article  CAS  Google Scholar 

  • Hayman D (1960) The distribution and cytology of the chromosome races of Themeda australis in southern Australia. Austral J Bot 8:58–68

    Article  Google Scholar 

  • Heath L, van der Walt E, Varsani A, Martin DP (2006) Recombination patterns in aphthoviruses mirror those found in other picornaviruses. J Virol 80:11827–11832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollingsworth PM, Graham SW, Damon PL (2011) Choosing and using a plant DNA barcode. PLOS One 6:e19254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson HD, Steane DA, Potts BM, Vaillancourt RE (1999) Chloroplast DNA evidence for reticulate evolution in Eucalyptus (Myrtaceae). Molec Ecol 8:739–751

    Article  Google Scholar 

  • Jennings WB, Pianka ER, Donnellan S (2003) Systematics of the lizard family Pygopodidae with implications for the diversification of Australian temperate biotas. Syst Biol 52:757–780

    Article  PubMed  Google Scholar 

  • Käss E, Wink M (1997) Molecular phylogeny and phylogeography of Lupinus (Leguminosae) inferred from nucleotide sequences of the rbcL gene and ITS 1 + 2 regions of rDNA. Pl Syst Evol 208:139–167

    Article  Google Scholar 

  • Kershaw AP (1994) The Neogene: a period of transition. In: Hill RS (ed) History of the Australian vegetation: Cretaceous to recent. Cambridge University Press, Cambridge, pp 299–327

    Google Scholar 

  • Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4:403–410

    Article  CAS  PubMed  Google Scholar 

  • Larcombe MJ, McKinnon GE, Vaillancourt RE (2011) Genetic evidence for the origins of range disjunctions in the Australian dry sclerophyll plant Hardenbergia violacea. J Biogeogr 38:125–136

    Article  Google Scholar 

  • Levy L, Castlebury LA, Carris LM, Meyer RJ, Pimentel G (2001) Internal transcribed spacer sequence-based phylogeny and polymerase chain reaction-restriction fragment length polymorphism differentiation of Tilletia walkeri and T. indica. Phytopathology 91:935–940

    Article  CAS  PubMed  Google Scholar 

  • Marginson J, Ladiges PY (1982) Morphological and geographical disjunctions in forms of Eucalyptus nitida Hook. f. (Myrtaceae): with special reference to the evolutionary significance of Bass Strait, southeastern Australia. Proc Roy Soc Victoria 94:155–167

    Google Scholar 

  • Marginson J, Ladiges PY (1988) Geographical variation in Eucalyptus baxteri s.l. and the recognition of a new species E. arenacea.. Austral Syst Bot 1:151–170

    Article  Google Scholar 

  • Martin D, Rybicki E (2000) RDP: detection of recombination amongst aligned sequences. Bioinform 16:562–563

    Article  CAS  Google Scholar 

  • Martin DP, Posada D, Crandall KA, Williamson C (2005) A modified BOOTSCAN algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res Hum Retroviruses 21:98–102

    Article  CAS  PubMed  Google Scholar 

  • Maynard Smith J (1992) Analyzing the mosaic structure of genes. J Molec Evol 34:126–129

    Google Scholar 

  • McKinnon GE, Steane DA, Potts BM, Vaillancourt RE (1999) Incongruence between chloroplast and species phylogenies in Eucalyptus subgenus Monocalyptus (Myrtaceae). Amer J Bot 86:1038–1046

    Article  CAS  Google Scholar 

  • McKinnon GE, Vaillancourt RE, Steane DA, Potts BM (2004) The rare silver gum, Eucalyptus cordata, is leaving its trace in the organellar gene pool of Eucalyptus globulus. Molec Ecol 13:3751–3762

    Article  Google Scholar 

  • McKinnon GE, Smith JJ, Potts BM (2010) Recurrent nuclear DNA introgression accompanies chloroplast DNA exchange between two eucalypt species. Molec Ecol 19:1367–1380

    Article  CAS  Google Scholar 

  • Meudt HM, Bayly MJ (2008) Phylogeographic patterns in the Australasian genus Chionohebe (Veronica s.l, Plantaginaceae) based on AFLP and chloroplast DNA sequences. Molec Phylogenet Evol 47:319–338

    Article  CAS  PubMed  Google Scholar 

  • Mir C, Jarne P, Sarda V, Bonin A, Lumaret R (2009) Contrasting nuclear and cytoplasmic exchanges between phylogenetically distant oak species (Quercus suber L. and Q. ilex L.) in Southern France: inferring crosses and dynamics. Pl Biol 11:213–226

    Article  CAS  Google Scholar 

  • Mole BJ, Udovicic F, Ladiges PY, Duretto MF (2004) Molecular phylogeny of Phebalium (Rutaceae: Boronieae) and related genera based on the nrDNA regions ITS 1 + 2. Pl Syst Evol 249:197–212

    Article  CAS  Google Scholar 

  • Nelson EC (1981) Phytogeography of southern Australia. In: Keast A (ed) Ecological biogeography of Australia. Dr W, Junk, The Hague, pp 735–757

    Google Scholar 

  • Nevill PG, Bossinger G, Ades PK (2010) Phylogeography of the world’s tallest angiosperm, Eucalyptus regnans: evidence for multiple isolated quaternary refugia. J Biogeogr 37:179–192

    Article  Google Scholar 

  • Nevill PG, Despres T, Bayly MJ, Bossinger G, Ades PK (2014) Shared phylogeographic patterns and widespread chloroplast haplotype sharing in Eucalyptus species with different ecological tolerances. Tree Genet and Genomes 10:1079–1092. doi:10.1007/s11295-014-0744-y

    Article  Google Scholar 

  • Nylander JAA (2004) MrModeltest v2. Evolutionary Biology Centre, Uppsala University, Program distributed by the author

    Google Scholar 

  • Othman RNA, Jordan GJ, Worth JRP, Steane DA, Duretto MF (2010) Phylogeny and infrageneric classification of Correa Andrews (Rutaceae) on the basis of nuclear and chloroplast DNA. Pl Syst Evol 288:127–138

    Article  Google Scholar 

  • Othman RNA, Jordan GJ, Duretto MF (2013) Morphometric analysis of Correa lawrenceana (Rutaceae) and reinstatement of var. ferruginea endemic to Tasmania. Austral Syst Bot 26:255–267

    Article  Google Scholar 

  • Padidam M, Sawyer S, Fauquet CM (1999) Possible emergence of new geminiviruses by frequent recombination. Virology 265:218–225

    Article  CAS  PubMed  Google Scholar 

  • Petit RJ, Excoffier L (2009) Gene flow and species delimitation. Trends Ecol Evol 24:386–393

    Article  PubMed  Google Scholar 

  • Posada D (2002) Evaluation of methods for detecting recombination from DNA sequences: empirical data. Molec Biol Evol 19:708–717

    Article  CAS  PubMed  Google Scholar 

  • Posada D, Crandall KA (2001) Evaluation of methods for detecting recombination from DNA sequences: Computer simulations. Proc Natl Acad Sci USA 98:13757–13762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rambaut A (2002) Se-Al: sequence alignment editor. Available at: http://tree.bio.ed.ac.uk/software/seal/

  • Rambaut A, Drummond AJ (2009) Tracer, version 1.5, MCMC trace analysis package. Available at: http://beast.bio.ed.ac.uk/Tracer

  • Remington CL (1968) Suture-zones of hybrid interaction between recently joined biotas. In: Dobzhansky T, Hecht MK, Steere WC (eds) Evolutionary biology. Plenum, New York

    Google Scholar 

  • Rieseberg LH (1991) Homoploid reticulate evolution in Helianthus (Asteraceae)– evidence from ribosomal genes. Amer J Bot 78:1218–1237

    Article  Google Scholar 

  • Rieseberg LH, Soltis DE (1991) Phylogenetic consequences of cytoplasmic gene flow in plants. Evol Trends Pl 5:65–84

    Google Scholar 

  • Rieseberg LH, Wendel JF (1993) Introgression and its consequences in plants. In: Harrison RG (ed) Hybrid zones and the evolutionary process. Oxford University Press, New York, pp 70–114

    Google Scholar 

  • Rix MG, Harvey MS (2012) Phylogeny and historical biogeography of ancient assassin spiders (Araneae: Archaeidae) in the Australian mesic zone: evidence for miocene speciation within tertiary refugia. Molec Phylogenet Evol 62:375–396

    Article  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Rowe HC, Renaut S, Guggisberg A (2011) RAD in the realm of next-generation sequencing technologies. Molec Ecol 20:3499–3502

    CAS  Google Scholar 

  • Salzburger W, Ewing GB, Von Haeseler A (2011) The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Molec Ecol 20:1952–1963

    Article  Google Scholar 

  • Schaal BA, Leverich WJ (2001) Plant population biology and systematics. Taxon 50:679–695

    Article  Google Scholar 

  • Simmons MP, Ochoterena H (2000) Gaps as characters in sequenced-based phylogenetic analyses. Syst Biol 49:369–381

    Article  CAS  PubMed  Google Scholar 

  • Soltis DE, Kuzoff RK (1995) Discordance between nuclear and chloroplast phylogenies in the Heuchera group (Saxifragaceae). Evolution 49:727–742

    Article  Google Scholar 

  • Soltis DE, Johnson LA, Looney C (1996) Discordance between ITS and chloroplast topologies in the Boykinia group (Saxifragaceae). Syst Bot 21:169–185

    Article  Google Scholar 

  • Specht RL (1972) The Vegetation of South Australia. Government Printer, Adelaide

    Google Scholar 

  • Stace HM, Armstrong JA, James SH (1993) Cytoevolutionary patterns in Rutaceae. Pl Syst Evol 187:1–28

    Article  Google Scholar 

  • Steane DA, Byrne M, Vaillancourt RE, Potts BM (1998) Chloroplast DNA polymorphism signals complex interspecific interactions in Eucalyptus (Myrtaceae). Austral Syst Bot 11:25–40

    Article  Google Scholar 

  • Swofford DL (2002) PAUP* 4.0b10: Phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland

    Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl Molec Biol 17:1105–1109

    Article  CAS  Google Scholar 

  • Tsitrone A, Kirkpatrick M, Levin D (2003) A model for chloroplast capture. Evolution 57:1776–1782

    Article  PubMed  Google Scholar 

  • Vincze T, Posfai J, Roberts RJ (2003) NEBcutter: a program to cleave DNA with restriction enzymes. Nucl Acids Res 31:3688–3691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendel JF, Stewart JM, Rettig JH (1991) Molecular evidence for homoploid reticulate evolution among Australian species of Gossypium. Evolution 45:694–711

    Article  Google Scholar 

  • Whiffin T (1977) Volatile oils and the study of natural hybridization between Correa aemula and C. reflexa (Rutaceae). Austral J Bot 25:291–298

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfrand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Williams M, Prescott JR, Chappell J, Adamson D, Cock B, Walker K, Gell P (2001) The enigma of a late Pleistocene wetland in the Flinders Ranges, South Australia. Quaternary Int 83–85:129–144

    Article  Google Scholar 

  • Wilson PG (1961) A taxonomic revision of the genus Correa (Rutaceae). Trans Royal Soc South Australia 85:21–53

    Google Scholar 

  • Wilson PG (1998) Notes on the genus Correa (Rutaceae). Nuytsia 12:89–105

    Google Scholar 

  • Wilson PG (2013) Correa. Fl Australia 26:337–361

Download references

Acknowledgments

For assistance with fieldwork or provision of specimens we thank Asher Warren, Miranda Weir, Ruby Wilson, Ramadhanil Pitopang, Will Neal, Tom Hans, Ron Taylor, Daniel Ohlsen, Paul Forster, Mike Mathieson, Alison Kellow, the La Trobe University Herbarium and the National Herbarium of Victoria. Plant collecting permits were provided by the Department of Sustainability and Environment (Victoria), the Department of Primary Industries, Parks, Water and Environment (Tasmania) and the Department for Environment, Water & Natural Resources (South Australia). This work was partly supported by an Early Career Researcher grant to MJB from The University of Melbourne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Bayly.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Christian Parisod.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

606_2016_1277_MOESM1_ESM.jpg

Online Resource 1. Map showing locations of collecting sites for this study. Details for each numbered locality are given in Table 1 (JPEG 8993 kb)

606_2016_1277_MOESM2_ESM.jpg

Online Resource 2. Proof of principle restriction digests. A. trnK restriction digest with Hpy188I: lane 1 contains Easyladder (Bioline), lanes 2-4 contain samples from haplotype Group 3 and lanes 5-7 contain samples from haplotype Groups 1 and 2. B. trnK restriction digest with ApoI: lane 1 contains Easyladder (Bioline), lanes 2-3 contain samples from haplotype Group 1 and lanes 4-5 contain samples from haplotype Group 2. C. ITS2 restriction digest with ApoI: lane 1 contains Hyperladder (Bioline), lanes 2-4 contain samples from ITS Clade 2 and lanes 5-7 contain samples from ITS Clade 3 (JPEG 157 kb)

606_2016_1277_MOESM3_ESM.pdf

Online Resource 3. Strict consensus tree from MP analysis of combined cpDNA markers. This tree was used as input for the program Haploviewer to generate the haplotype network shown in Fig. 3. Bootstrap support is shown above branches and PP from Bayesian analysis is shown below branches. * = species not identified to variety due to lack of reproductive material (PDF 512 kb)

606_2016_1277_MOESM4_ESM.jpg

Online Resource 4. Sequencing chromatograms of putative hybrid (PAF160) and typical chromatograms of the ITS Clades 2 and 3. At bases which differentiate Clades 2 and 3, the putative hybrid has two peaks, representing both alternative bases and indicating the presence of two types of ITS copies in the genome of this individual (JPEG 146 kb)

Information on Electronic Supplementary Material

Information on Electronic Supplementary Material

Online Resource 1. Map showing locations of collecting sites for this study.

Online Resource 2. Proof of principle restriction digests.

Online Resource 3. Strict consensus tree from MP analysis of combined cpDNA markers.

Online Resource 4. Sequencing chromatograms of putative hybrid (PAF160) and typical chromatograms of the ITS Clades 2 and 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

French, P.A., Brown, G.K. & Bayly, M.J. Incongruent patterns of nuclear and chloroplast variation in Correa (Rutaceae): introgression and biogeography in south-eastern Australia. Plant Syst Evol 302, 447–468 (2016). https://doi.org/10.1007/s00606-016-1277-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-016-1277-7

Keywords

Navigation