Skip to main content
Log in

Considerations for measuring iron in post-mortem tissue of Parkinson’s disease patients

  • Neurology and Preclinical Neurological Studies - Review article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Redox-active iron is considered to be an important factor in the pathology and progression of several neurodegenerative disorders, including Parkinson’s disease. The various roles of iron in normal physiology and its prevalence in the wider environment present numerous challenges to both accurate measurement and interpretation of brain iron levels. This review will discuss considerations for the analysis of iron in post-mortem samples, including how contamination, sample preparation and methods of analysis may influence results. In addition, several important factors influencing interpretation of iron levels will be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andrási E, Igaz S, Szoboszlai N, Farkas É, Ajtony Z (1999) Several methods to determine heavy metals in the human brain. Spectrochim Acta B 54:819–825

    Article  Google Scholar 

  • Ashoka S, Peake BM, Bremner G, Hageman KJ, Reid MR (2009) Comparison of digestion methods for ICP-MS determination of trace elements in fish tissues. Anal Chim Acta 653:191–199

    Article  PubMed  CAS  Google Scholar 

  • Becker JS, Niehren S, Matusch A, Wu B, Hsieh HF, Kumtabtim U, Hamester M, Plaschke-Schlütter S, Salber D (2010) Scaling down the bioimaging of metals by laser microdissection inductively coupled plasma mass spectrometry (LMD-ICP-MS). Int J Mass Spectrom 294:1–6

    Article  CAS  Google Scholar 

  • Bohic S, Murphy K, Paulus W, Cloetens P, Salomé M, Susini J, Double K (2008) Intracellular chemical imaging of the developmental phases of human neuromelanin using synchrotron X-ray microspectroscopy. Anal Chem 80:9557–9566

    Article  PubMed  CAS  Google Scholar 

  • Bornhorst JA, Hunt JW, Urry FM, McMillin GA (2005) Comparison of sample preservation methods for clinical trace element analysis by inductively coupled plasma mass spectrometry. Am J Clin Pathol 123:578–583

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Tredici KD, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  • Bush VJ, Moyer TP, Batts KP, Parisi JE (1995) Essential and toxic element concentrations in fresh and formalin-fixed human autopsy tissues. Clin Chem 41:284–294

    PubMed  CAS  Google Scholar 

  • Castellani RJ, Siedlak SL, Perry G, Smith MA (2000) Sequestration of iron by Lewy bodies in Parkinson’s disease. Acta Neuropathol 100:111–114

    Article  PubMed  CAS  Google Scholar 

  • Chuaanusorn W, Webb J, Macey DJ, Pootrakul P, StPierre TG (1997) The effect of histological processing on the form of iron in iron-loaded human tissues. BBA Mol Basis Dis 1360:255–261

    Article  CAS  Google Scholar 

  • Clegg M, Keen C, Lönnerdal B, Hurley L (1981) Influence of ashing techniques on the analysis of trace elements in animal tissue. Biol Trace Elem Res 3:107–115

    Article  CAS  Google Scholar 

  • Cornelis R, Hoste J, Versieck J (1982) Potential interferences inherent in neutron-activation analysis of trace elements in biological materials. Talanta 29:1029–1034

    Article  PubMed  CAS  Google Scholar 

  • Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P, Marsden CD (1989) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 52:1830–1836

    Article  PubMed  CAS  Google Scholar 

  • Dexter DT, Carayon A, Javoy-Agid F, Agid Y, Wells FR, Daniel SE, Lees AJ, Jenner P, Marsden CD (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114:1953–1975

    Article  PubMed  Google Scholar 

  • Double KL, Gerlach M, Schünemann V, Trautwein AX, Zecca L, Gallorini M, Youdim MBH, Riederer P, Ben-Shachar D (2003) Iron-binding characteristics of neuromelanin of the human substantia nigra. Biochem Pharmacol 66:489–494

    Article  PubMed  CAS  Google Scholar 

  • Engstrom E, Stenberg A, Senioukh S, Edelbro R, Baxter DC, Rodushkin I (2004) Multi-elemental characterization of soft biological tissues by inductively coupled plasma-sector field mass spectrometry. Anal Chim Acta 521:123–135

    Article  CAS  Google Scholar 

  • Faucheux BA, Martin ME, Beaumont C, Hunot S, Hauw JJ, Agid Y, Hirsch EC (2002) Lack of up-regulation of ferritin is associated with sustained iron regulatory protein-1 binding activity in the substantia nigra of patients with Parkinson’s disease. J Neurochem 83:320–330

    Article  PubMed  CAS  Google Scholar 

  • Faucheux BA, Martin ME, Beaumont C, Hauw JJ, Agid Y, Hirsch EC (2003) Neuromelanin associated redox-active iron is increased in the substantia nigra of patients with Parkinson’s disease. J Neurochem 86:1142–1148

    Article  PubMed  CAS  Google Scholar 

  • Fenton HJH (1894) Oxidation of tartaric acid in presence of iron. Chem Soc J 65:899–909

    Article  CAS  Google Scholar 

  • Gałazka-Friedman J, Bauminger ER, Friedman A, Barcikowska M, Hechel D, Nowik I (1996) Iron in parkinsonian and control substantia nigra—a mössbauer spectroscopy study. Mov Disord 11:8–16

    Article  PubMed  Google Scholar 

  • Gellein K, Flaten TP, Erikson KM, Aschner M, Syversen T (2008) Leaching of trace elements from biological tissue by formalin fixation. Biol Trace Elem Res 121:221–225

    Article  PubMed  CAS  Google Scholar 

  • Gerlach M, Ben-Shachar D, Riederer P, Youdim MBH (1994) Altered brain metabolism of iron as a cause of neurodegenerative diseases? J Neurochem 63:793–807

    Article  PubMed  CAS  Google Scholar 

  • Gerlach M, Double K, Riederer P, Hirsch E, Jellinger K, Jenner P, Trautwein A, Youdim MBH (1997) Letter to the editor: iron in the parkinsonian substantia nigra. Mov Disord 12:256–263

    Article  Google Scholar 

  • Gerlach M, Double K, Götz M, Youdim M, Riederer P (2006a) The role of iron in the pathogenesis of Parkinson’s disease. In: Sigel A, Sigel H, Sigel R (eds) Neurodegenerative diseases and metal ions: metal ions in life science, vol 1. Wiley, Chichester, pp 125–149

    Chapter  Google Scholar 

  • Gerlach M, Double KL, Youdim MBH, Riederer P (2006b) Potential sources of increased iron in the substantia nigra of parkinsonian patients. J Neural Transm Suppl 70:133–142

    Google Scholar 

  • Gorell JM, Ordidge RJ, Brown GG, Deniau J-C, Buderer NM, Helpern JA (1995) Increased iron-related MRI contrast in the substantia nigra in Parkinson’s disease. Neurology 45:1138–1143

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge JMC, Rowley DA, Halliwell B (1981) Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts—detection of free iron in biological-systems by using bleomycin-dependent degradation of dna. Biochem J 199:263–265

    PubMed  CAS  Google Scholar 

  • Gutteridge JMC, Cao W, Chevion M (1991) Bleomycin-detectable iron in brain-tissue. Free Rad Res Commun 11:317–320

    Article  CAS  Google Scholar 

  • Gwozdz R, Grass F (2004) Contamination by human fingers: the Midas touch. J Radioanal Nucl Chem 259:173–176

    Article  CAS  Google Scholar 

  • Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51

    Article  PubMed  CAS  Google Scholar 

  • Hare D, Reedy B, Grimm R, Wilkins S, Volitakis I, George J, Cherny RA, Bush AI, Finkelstein DI, Doble P (2009) Quantitative elemental bio-imaging of Mn, Fe, Cu and Zn in 6-hydroxydopamine Parkinsonism mouse models. Metallomics 1:53–58

    Article  CAS  Google Scholar 

  • Hare DJ, George JL, Grimm R, Wilkins S, Adlard PA, Cherny RA, Bush AI, Finkelstein DI, Doble P (2010) Three-dimensional elemental bio-imaging of Fe, Zn, Cu, Mn and P in a 6-hydroxydopamine lesioned mouse brain. Metallomics 2:745–753

    Article  PubMed  CAS  Google Scholar 

  • Hare D, Austin C, Doble P (2012a) Quantification strategies for elemental imaging of biological samples using laser ablation-inductively coupled plasma-mass spectrometry. Analyst 137:1527–1537

    Article  PubMed  CAS  Google Scholar 

  • Hare DJ, Lee JK, Beavis AD, van Gramberg A, George J, Adlard PA, Finkelstein DI, Doble PA (2012b) Three-dimensional atlas of iron, copper, and zinc in the mouse cerebrum and brainstem. Anal Chem 84:3990–3997

    Article  PubMed  CAS  Google Scholar 

  • Harrison WW, Netsky MG, Brown MD (1968) Trace elements in human brain: copper, zinc, iron, and magnesium. Clin Chim Acta 21:55

    Article  PubMed  CAS  Google Scholar 

  • Hoenig M (2001) Preparation steps in environmental trace element analysis—facts and traps. Talanta 54:1021–1038

    Article  PubMed  CAS  Google Scholar 

  • Kakhlon O, Cabantchik ZI (2002) The labile iron pool: characterization, measurement, and participation in cellular processes. Free Rad Biol Med 33:1037–1046

    Article  PubMed  CAS  Google Scholar 

  • Koeppen AH (2003) A brief history of brain iron research. J Neurol Sci 207:95–97

    Article  PubMed  Google Scholar 

  • Laxen DPH, Harrison RM (1981) Cleaning methods for polythene containers prior to the determination of trace-metals in fresh-water samples. Anal Chem 53:345–350

    Article  CAS  Google Scholar 

  • Lhermitte J, Kraus WM, McAlpine D (1924) On the occurrence of abnormal deposits of iron in the brain in Parkinsonism with special reference to its localisation. J Neurol Psychopathol 5:195–208

    Article  PubMed  CAS  Google Scholar 

  • Lux F, Bereznai T, Haeberlin ST (1987) Minimization of the blank values in the neutron-activation analysis of biological samples considering the whole procedure. J Radioanal Nucl Chem 112:161–168

    Article  CAS  Google Scholar 

  • McRae R, Bagchi P, Sumalekshmy S, Fahrni CJ (2009) In situ imaging of metals in cells and tissues. Chem Rev 109:4780–4827

    Article  PubMed  CAS  Google Scholar 

  • Moody JR, Lindstrom RM (1977) Selection and cleaning of plastic containers for storage of trace element samples. Anal Chem 49:2264–2267

    Article  CAS  Google Scholar 

  • Owen AD, Schapira AHV, Jenner P, Marsden CD (1997) Indices of oxidative stress in Parkinson’s disease, Alzheimer’s disease and dementia with Lewy bodies. J Neural Trans Suppl 51:167–173

    Google Scholar 

  • Panayi AE, Spyrou NM, Ubertalli LC, White MA, Part P (1999) Determination of trace elements in porcine brain by inductively coupled plasma-mass spectrometry, electrothermal atomic absorption spectrometry, and instrumental neutron activation analysis. Biol Trace Elem Res 71–72:529–540

    Article  PubMed  Google Scholar 

  • Quintana C, Bellefqih S, Laval JY, Guerquin-Kern JL, Wu TD, Avila J, Ferrer I, Arranz R, Patino C (2006) Study of the localization of iron, ferritin, and hemosiderin in Alzheimer’s disease hippocampus by analytical microscopy at the subcellular level. J Struct Biol 153:42–54

    Article  PubMed  CAS  Google Scholar 

  • Rahil-Khazen R, Bolann BJ, Myking A, Ulvik RJ (2002a) Multi-element analysis of trace element levels in human autopsy tissues by using inductively coupled atomic emission spectrometry technique (ICP-AES). J Trace Elem Med Biol 16:15–25

    Article  PubMed  CAS  Google Scholar 

  • Rahil-Khazen R, Bolann BJ, Ulvik RJ (2002b) Correlations of trace element levels within and between different normal autopsy tissues analyzed by inductively coupled plasma atomic emission spectrometry (ICP-AES). Biometals 15:87–98

    Article  PubMed  CAS  Google Scholar 

  • Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MBH (1989) Transition-metals, ferritin, glutathione, and ascorbic-acid in parkinsonian brains. J Neurochem 52:515–520

    Article  PubMed  CAS  Google Scholar 

  • Schapira AH, Jenner P (2011) Etiology and pathogenesis of Parkinson’s disease. Mov Disord 26:1049–1055

    Article  PubMed  Google Scholar 

  • Schrag M, Dickson A, Jiffry A, Kirsch D, Vinters HV, Kirsch W (2010) The effect of formalin fixation on the levels of brain transition metals in archived samples. Biometals 23:1123–1127

    Article  PubMed  CAS  Google Scholar 

  • Sian-Hülsmann J, Mandel S, Youdim MBH, Riederer P (2011) The relevance of iron in the pathogenesis of Parkinson’s disease. J Neurochem 118:939–957

    Article  PubMed  Google Scholar 

  • Sofic E, Riederer P, Heinsen H, Beckmann H, Reynolds GP, Hebenstreit G, Youdim MBH (1988) Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 74:199–205

    Article  PubMed  CAS  Google Scholar 

  • Versieck J (1983) Biological sample collection and preparation for trace element analysis. TrAC Trends Anal Chem 2:110–113

    Article  CAS  Google Scholar 

  • Versieck J, Barbier F, Cornelis R, Hoste J (1982) Sample contamination as a source of error in trace-element analysis of biological samples. Talanta 29:973–984

    Article  PubMed  CAS  Google Scholar 

  • Versieck J, Vanballenberghe L, De Kesel A, Van Renterghem D (1987) Accuracy of biological trace-element determinations. Biol Trace Elem Res 12:45–54

    Article  CAS  Google Scholar 

  • Wypijewska A, Galazka-Friedman J, Bauminger ER, Wszolek ZK, Schweitzer KJ, Dickson DW, Jaklewicz A, Elbaum D, Friedman A (2010) Iron and reactive oxygen species activity in parkinsonian substantia nigra. Parkinsonism Relat Disord 16:329–333

    Article  PubMed  Google Scholar 

  • Xu X, Wang Q, Zhang M (2008) Age, gender, and hemispheric differences in iron deposition in the human brain: an in vivo MRI study. Neuroimage 40:35–42

    Article  PubMed  CAS  Google Scholar 

  • Zecca L, Pietra R, Goj C, Mecacci C, Radice D, Sabbioni E (1994) Iron and other metals in neuromelanin, substantia nigra, and putamen of human brain. J Neurochem 62:1097–1101

    Article  PubMed  CAS  Google Scholar 

  • Zecca L, Gallorini M, Schünemann V, Trautwein AX, Gerlach M, Riederer P, Vezzoni P, Tampellini D (2001) Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at different ages: consequences for iron storage and neurodegenerative processes. J Neurochem 76:1766–1773

    Article  PubMed  CAS  Google Scholar 

  • Zecca L, Stroppolo A, Gatti A, Tampellini D, Toscani M, Gallorini M, Giaveri G, Arosio P, Santambrogio P, Fariello RG (2004a) The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proc Natl Acad Sci USA 101:9843

    Article  PubMed  CAS  Google Scholar 

  • Zecca L, Youdim MBH, Riederer P, Connor JR, Crichton RR (2004b) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5:863–873

    Article  PubMed  CAS  Google Scholar 

  • Zecca L, Zucca FA, Toscani M, Adorni F, Giaveri G, Rizzio E, Gallorini M (2005) Iron, copper and their proteins in substantia nigra of human brain during aging. J Radioanal Nucl Chem 263:733–737

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic J. Hare.

Additional information

M. Gerlach is equal first author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hare, D.J., Gerlach, M. & Riederer, P. Considerations for measuring iron in post-mortem tissue of Parkinson’s disease patients. J Neural Transm 119, 1515–1521 (2012). https://doi.org/10.1007/s00702-012-0898-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-012-0898-4

Keywords

Navigation