Skip to main content
Log in

Pharmacoepigenetics of depression: no major influence of MAO-A DNA methylation on treatment response

  • Psychiatry and Preclinical Psychiatric Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

The monoamine oxidase A (MAO-A) gene has been suggested to be involved in the pathogenesis as well as the pharmacological treatment of major depressive disorder. In the present analysis, for the first time a pharmacoepigenetic approach was applied investigating the influence of DNA methylation patterns in the MAO-A regulatory and exon1/intron1 region on antidepressant treatment response. 94 patients of Caucasian descent with major depressive disorder (f = 61; DSM-IV) were analyzed for DNA methylation status at 43 MAO-A CpG sites via direct sequencing of sodium bisulfite treated DNA extracted from blood cells. Patients were also genotyped for the functional MAO-A VNTR. Clinical response to antidepressant treatment with escitalopram was assessed by intra-individual changes of HAM-D-21 scores after 6 weeks of treatment. Apart from two CpG sites, male subjects showed no or only very minor methylation. In female patients, lower methylation at two individual CpG sites in the MAO-A promoter region was nominally associated with impaired response to antidepressant treatment after 6 weeks (GRCh37/hg19: CpG 43.514.063, p = 0.04; CpG 43.514.684, p = 0.009), not, however, withstanding correction for multiple testing. MAO-A VNTR genotypes did not influence MAO-A methylation status. The present pilot data do not suggest a major influence of MAO-A DNA methylation on antidepressant treatment response. However, the presently observed trend towards CpG-specific MAO-A gene hypomethylation—possibly via increased gene expression and consecutively decreased serotonin and/or norepinephrine availability—to potentially drive impaired antidepressant treatment response in female patients might be worthwhile to be followed up in larger pharmacoepigenetic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Alasaari JS, Lagus M, Ollila HM, Toivola A, Kivimaki M, Vahtera J, Kronholm E, Harma M, Puttonen S, Paunio T (2012) Environmental stress affects DNA methylation of a CpG rich promoter region of serotonin transporter gene in a nurse cohort. PLoS ONE 7:e45813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baune BT, Hohoff C, Berger K, Neumann A, Mortensen S, Roehrs T, Deckert J, Arolt V, Domschke K (2008) Association of the COMT val158met variant with antidepressant treatment response in Major Depression. Neuropsychopharmacology 33:924–932

    Article  CAS  PubMed  Google Scholar 

  • Brenet F, Moh M, Funk P, Feierstein E, Viale AJ, Socci ND, Scandura JM (2011) DNA methylation of the first exon is tightly linked to transcriptional silencing. PLoS ONE 6:e14524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carrel L, Willard HF (2005) X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434:400–404

    Article  CAS  PubMed  Google Scholar 

  • Cusin C, Serretti A, Zanardi R, Lattuada E, Rossini D, Lilli R, Lorenzi C, Smeraldi E (2002) Influence of monoamine oxidase A and serotonin receptor 2A polymorphisms in SSRI antidepressant activity. Int J Neuropsychopharmacol 5:27–35

    Article  CAS  PubMed  Google Scholar 

  • D’Addario C, Dell’osso B, Galimberti D, Palazzo MC, Benatti B, Di Francesco A, Scarpini E, Altamura AC, Maccarrone M (2013) Epigenetic modulation of BDNF gene in patients with major depressive disorder. Biol Psychiatry 73:e6–e7

    Article  PubMed  Google Scholar 

  • Davies MN, Volta M, Pidsley R, Lunnon K, Dixit A, Lovestone S, Coarfa C, Harris RA, Milosavljevic A, Troakes C, Al-Sarraj S, Dobson R, Schalkwyk LC, Mill J (2012) Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol 13:R43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deckert J, Catalano M, Syagailo YV, Bosi M, Okladnova O, Di Bella D, Nöthen MM, Maffei P, Franke P, Fritze J, Maier W, Propping P, Beckmann H, Bellodi L, Lesch KP (1999) Excess of high activity monoamine oxidase A gene promoter alleles in female patients with panic disorder. Hum Mol Genet 8:621–624

    Article  CAS  PubMed  Google Scholar 

  • Domschke K, Dannlowski U, Ohrmann P, Lawford B, Bauer J, Kugel H, Heindel W, Young R, Morris P, Arolt V, Deckert J, Suslow T, Baune BT (2008a) Cannabinoid receptor 1 (CNR1) gene: Impact on antidepressant treatment response and emotion processing in Major Depression. Eur Neuropsychopharmacol 18:751–759

    Article  CAS  PubMed  Google Scholar 

  • Domschke K, Hohoff C, Mortensen LS, Roehrs T, Deckert J, Arolt V, Baune BT (2008b) MAO-A variant influences antidepressant treatment response in female patients with Major Depression. Prog Neuropsychopharmacol Biol Psychiatry 32:224–228

    Article  CAS  PubMed  Google Scholar 

  • Domschke K, Lawford B, Laje G, Berger K, Young R, Morris P, Deckert J, Arolt V, McMahon FJ, Baune BT (2010) Brain-derived neurotrophic factor (BDNF) gene—No major impact on antidepressant treatment response. Int J Neuropsychopharmacol 13:93–101

    Article  CAS  PubMed  Google Scholar 

  • Domschke K, Tidow N, Kuithan H, Schwarte K, Klauke B, Ambrée O, Reif A, Schmidt H, Arolt V, Kersting A, Zwanzger P, Deckert J (2012) Monoamine oxidase A gene hypomethylation—a risk factor for panic disorder? Int J Neuropsychopharmacol 15:1217–1228

    Article  CAS  PubMed  Google Scholar 

  • Domschke K, Tidow N, Schrempf M, Schwarte K, Klauke B, Reif A, Kersting A, Arolt V, Zwanzger P, Deckert J (2013) Epigenetic signature of panic disorder: a role of glutamate decarboxylase 1 (GAD1) DNA hypomethylation? Prog Neuropsychopharmacol Biol Psychiatry 46:189–196

    Article  CAS  PubMed  Google Scholar 

  • Domschke K, Tidow N, Schwarte K, Deckert J, Lesch KP, Arolt V, Zwanzger P, Baune BT (2014) Serotonin transporter gene hypomethylation predicts impaired antidepressant treatment response. Int J Neuropsychopharmacol 28:1–10

    Google Scholar 

  • Ehrlich S, Weiss D, Burghardt R, Infante-Duarte C, Brockhaus S, Muschler MA, Bleich S, Lehmkuhl U, Frieling H (2010) Promoter specific DNA methylation and gene expression of POMC in acutely underweight and recovered patients with anorexia nervosa. J Psychiatr Res 44:827–833

    Article  PubMed  Google Scholar 

  • Fuchikami M, Morinobu S, Segawa M, Okamoto Y, Yamawaki S, Ozaki N, Inoue T, Kusumi I, Koyama T, Tsuchiyama K, Terao T (2011) DNA methylation profiles of the brain-derived neurotrophic factor (BDNF) gene as a potent diagnostic biomarker in major depression. PLoS ONE 6:e23881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gartler SM, Riggs AD (1983) Mammalian X-chromosome inactivation. Annu Rev Genet 17:155–190

    Article  CAS  PubMed  Google Scholar 

  • Gladkevich A, Kauffman HF, Korf J (2004) Lymphocytes as a neural probe: potential for studying psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 28:559–576

    Article  PubMed  Google Scholar 

  • Hebels DG, Georgiadis P, Keun HC, Athersuch TJ, Vineis P, Vermeulen R, Portengen L, Bergdahl IA, Hallmans G, Palli D, Bendinelli B, Krogh V, Tumino R, Sacerdote C, Panico S, Kleinjans JC, de Kok TM, Smith MT, Kyrtopoulos SA, EnviroGenomarkers Project Consortium (2013) Performance in omics analyses of blood samples in long-term storage: opportunities for the exploitation of existing biobanks in environmental health research. Environ Health Perspect 121:480–487

    PubMed Central  PubMed  Google Scholar 

  • Heberlein A, Muschler M, Frieling H, Behr M, Eberlein C, Wilhelm J, Gröschl M, Kornhuber J, Bleich S, Hillemacher T (2013) Epigenetic down regulation of nerve growth factor during alcohol withdrawal. Addict Biol 18:508–510

    Article  CAS  PubMed  Google Scholar 

  • Hollegaard MV, Grauholm J, Nørgaard-Pedersen B, Hougaard DM (2013) DNA methylome profiling using neonatal dried blood spot samples: a proof-of-principle study. Mol Genet Metab 108:225–231

    Article  CAS  PubMed  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254

    Article  CAS  PubMed  Google Scholar 

  • Kang HJ, Kim JM, Stewart R, Kim SY, Bae KY, Kim SW, Shin IS, Shin MG, Yoon JS (2013) Association of SLC6A4 methylation with early adversity, characteristics and outcomes in depression. Prog Neuropsychopharmacol Biol Psychiatry 44C:23–28

    Article  Google Scholar 

  • Kersting A, Kroker K, Horstmann J, Baune BT, Hohoff C, Mortensen LS, Neumann LC, Arolt V, Domschke K (2007) Association of MAO-A variant with complicated grief in major depression. Neuropsychobiology 56:191–196

    Article  CAS  PubMed  Google Scholar 

  • Kunugi H, Ishida S, Kato T, Tatsumi M, Sakai T, Hattori M, Hirose T, Nanko S (1999) A functional polymorphism in the promoter region of monoamine oxidase-A gene and mood disorders. Mol Psychiatry 4:393–395

    Article  CAS  PubMed  Google Scholar 

  • Launay JM, Del Pino M, Chironi G, Callebert J, Peoc’h K, Mégnien JL, Mallet J, Simon A, Rendu F (2009) Smoking induces long-lasting effects through a monoamine-oxidase epigenetic regulation. PLoS ONE 4:7959

    Article  Google Scholar 

  • Lewin J, Schmitt AO, Adorján P, Hildmann T, Piepenbrock C (2004) Quantitative DNA methylation analysis based on four-dye trace data from direct sequencing of PCR amplificates. Bioinformatics 20:3005–3012

    Article  CAS  PubMed  Google Scholar 

  • McGowan PO, Kato T (2008) Epigenetics in mood disorders. Environ Health Prev Med 13:16–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Melas PA, Wie Y, Wong CCY, Sjoholm LK, Aberg E, Mill J, Schalling M, Forsell Y, Lavebratt C (2013) Genetic and epigenetic associations of MAOA and NR3C1 with depression and childhood adversities. Int J Neuropsychopharmacol 16:1513–1528

    Article  CAS  PubMed  Google Scholar 

  • Menke A, Klengel T, Binder EB (2012) Epigenetics, depression and antidepressant treatment. Curr Pharm Des 18:5879–5889

    Article  CAS  PubMed  Google Scholar 

  • Meyer JH, Ginovart N, Boovariwala A, Sagrati S, Hussey D, Garcia A, Young T, Praschak-Rieder N, Wilson AA, Houle S (2006) Elevated monoamine oxidase a levels in the brain: an explanation for the monoamine imbalance of major depression. Arch Gen Psychiatry 63:1209–1216

    Article  CAS  PubMed  Google Scholar 

  • Mill J, Petronis A (2007) Molecular studies of major depressive disorder: the epigenetic perspective. Mol Psychiatry 12:799–814

    Article  CAS  PubMed  Google Scholar 

  • Müller DJ, Schulze TG, Macciardi F, Ohlraun S, Gross MM, Scherk H, Neidt H, Syagailo YV, Grässle M, Nöthen MM, Maier W, Lesch KP, Rietschel M (2002) Moclobemide response in depressed patients: association study with a functional polymorphism in the monoamine oxidase A promoter. Pharmacopsychiatry 35:157–158

    Article  PubMed  Google Scholar 

  • Murphy BC, O’Reilly RL, Singh SM (2005) Site-specific cytosine methylation in S-COMT promoter in 31 brain regions with implications for studies involving schizophrenia. Am J Med Genet 133:37–42

    Article  Google Scholar 

  • Muschler MA, Hillemacher T, Kraus C, Kornhuber J, Bleich S, Frieling H (2010) DNA methylation of the POMC gene promoter is associated with craving in alcohol dependence. J Neural Transm 117:513–519

    Article  CAS  PubMed  Google Scholar 

  • Nohesara S, Ghadirivasfi M, Mostafavi S, Eskandari MR, Ahmadkhaniha H, Thiagalingam S, Abdolmaleky HM (2011) DNA hypomethylation of MB-COMT promoter in the DNA derived from saliva in schizophrenia and bipolar disorder. J Psychiatr Res 45:1432–1438

    Article  PubMed  Google Scholar 

  • Olsson CA, Foley DL, Parkinson-Bates M, Byrnes G, McKenzie M, Patton GC, Morley R, Anney RJ, Craig JM, Saffery R (2010) Prospects for epigenetic research within cohort studies of psychological disorder: a pilot investigation of a peripheral cell marker of epigenetic risk for depression. Biol Psychology 83:159–165

    Article  CAS  Google Scholar 

  • Peters EJ, Slager SL, McGrath PJ, Knowles JA, Hamilton SP (2004) Investigation of serotonin-related genes in antidepressant response. Mol Psychiatry 9:879–889

    Article  CAS  PubMed  Google Scholar 

  • Philibert RA, Beach SR, Gunter TD, Brody GH, Madan A, Gerrard M (2010) The effect of smoking on MAOA promoter methylation in DNA prepared from lymphoblasts and whole blood. Am J Med Genet 153:619–628

    Google Scholar 

  • Philibert RA, Gunter TD, Beach SR, Brody GH, Madan A (2008) MAOA methylation is associated with nicotine and alcohol dependence in women. Am J Med Genet 147:565–570

    Article  Google Scholar 

  • Pinsonneault JK, Papp AC, Sadée W (2006) Allelic mRNA expression of X-linked monoamine oxidase a (MAOA) in human brain: dissection of epigenetic and genetic factors. Hum Mol Genet 15:2636–2649

    Article  CAS  PubMed  Google Scholar 

  • Powell TR, Smith RG, Hackinger S, Schalkwyk LC, Uher R, McGuffin P, Mill J, Tansey KE (2013) DNA methylation in interleukin-11 predicts clinical response to antidepressants in GENDEP. Transl Psychiatry 3:e300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Priest RG, Gimbrett R, Roberts M, Steinert J (1995) Reversible and selective inhibitors of monoamine oxidase A in mental and other disorders. Acta Psychiatr Scand Suppl 386:40–43

    Article  CAS  PubMed  Google Scholar 

  • Rush AJ, Kraemer HC, Sackeim HA, Fava M, Trivedi MH, Frank E, Ninan PT, Thase ME, Gelenberg AJ, Kupfer DJ, Regier DA, Rosenbaum JF, Ray O, Schatzberg AF, ACNP Task Force (2006) Report by the ACNP task force on response and remission in major depressive disorder. Neuropsychopharmacology 31:1841–1853

    Article  PubMed  Google Scholar 

  • Sabol SZ, Hu S, Hamer D (1998) A functional polymorphism in the monoamine oxidase A gene promoter. Hum Genet 103:273–279

    Article  CAS  PubMed  Google Scholar 

  • Sabunciyan S, Aryee MJ, Irizarry RA, Rongione M, Webster MJ, Kaufman WE, Murakami P, Lessard A, Yolken RH, Feinberg AP, Potash JB, GenRED Consortium (2012) Genome-wide DNA methylation scan in major depressive disorder. PLoS ONE 7:e34451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sandovici I, Naumova AK, Leppert M, Linares Y, Sapienza C (2004) A longitudinal study of X-inactivation ratio in human females. Hum Genet 115:387–392

    Article  PubMed  Google Scholar 

  • Schroeder M, Hillemacher T, Bleich S, Frieling H (2012) The epigenetic code in depression: implications for treatment. Clin Pharmacol Ther 91:310–314

    Article  CAS  PubMed  Google Scholar 

  • Schroeder M, Krebs MO, Bleich S, Frieling H (2010) Epigenetics and depression: current challenges and new therapeutic options. Curr Opin Psychiatry 23:588–592

    Article  PubMed  Google Scholar 

  • Schulze TG, Müller DJ, Krauss H, Scherk H, Ohlraun S, Syagailo YV, Windemuth C, Neidt H, Grässle M, Papassotiropoulos A, Heun R, Nöthen MM, Maier W, Lesch KP, Rietschel M (2000) Association between a functional polymorphism in the monoamine oxidase A gene promoter and major depressive disorder. Am J Med Genet 96:801–803

    Article  CAS  PubMed  Google Scholar 

  • Sharp A, Robinson D, Jacobs P (2000) Age- and tissue-specific variation of X chromosome inactivation ratios in normal women. Hum Genet 107:343–349

    Article  CAS  PubMed  Google Scholar 

  • Sherif F, Marcusson J, Oreland L (1991) Brain gamma-aminobutyrate transaminase and monoamine oxidase activities in suicide victims. Eur Arch Psychiatry Clin Neurosci 241:139–144

    Article  CAS  PubMed  Google Scholar 

  • Shih JC, Thompson RF (1999) Monoamine oxidase in neuropsychiatry and behavior. Am J Hum Genet 65:593–598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shumay E, Fowler JS (2010) Identification and characterization of putative methylation targets in the MAOA locus using bioinformatic approaches. Epigenetics 5:325–342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shumay E, Logan J, Volkow ND, Fowler JS (2012) Evidence that the methylation state of the monoamine oxidase A (MAOA) gene predicts brain activity of MAO A enzyme in healthy men. Epigenetics 7:1151–1160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stabellini R, de Mello JC, Hernandes LM, Pereira LV (2009) MAOA and GYG2 are submitted to X chromosome inactivation in human fibroblasts. Epigenetics 4:388–393

    Article  CAS  PubMed  Google Scholar 

  • Syagailo YV, Stöber G, Grässle M, Reimer E, Knapp M, Jungkunz G, Okladnova O, Meyer J, Lesch KP (2001) Association analysis of the functional monoamine oxidase A gene promoter polymorphism in psychiatric disorders. Am J Genet 105:168–171

    Article  CAS  Google Scholar 

  • Tadic A, Muller-Engling L, Schlicht KF, Kotsiari A, Dreimuller N, Kleimann A, Bleich S, Lieb K, Frieling H (2013) Methylation of the promoter of brain-derived neurotrophic factor exon IV and antidepressant response in major depression. Mol Psychiatry. doi:10.1038/mp.2013.58

    PubMed  Google Scholar 

  • Tost J (2010) DNA Methylation: an introduction to the biology and the disease-associated changes of a promising biomarker. Molecular Bioltechnolog 44:71–81

    Article  CAS  Google Scholar 

  • Uddin M, Koenen KC, Aiello AE, Wildman DE, de los SR, Galea S (2011) Epigenetic and inflammatory marker profiles associated with depression in a community-based epidemiologic sample. Psychol Med 41:997–1007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uddin M, Sipahi L, Li J, Koenen KC (2013) Sex differences in DNA methylation may contribute to risk of PTSD and depression: a review of existing evidence. Depress Anxiety 30:1151–1160

    Article  CAS  PubMed  Google Scholar 

  • Ursini G, Bollati V, Fazio L, Porcelli A, Iacovelli L, Catalani A, Sinibaldi L, Gelao B, Romano R, Rampino A, Taurisano P, Mancini M, Di Giorgio A, Popolizio T, Baccarelli A, De Blasi A, Blasi G, Bertolino A (2011) Stress-related methylation of the catechol-O-methyltransferase Val 158 allele predicts human prefrontal cognition and activity. J Neurosci 31:6692–6698

    Article  CAS  PubMed  Google Scholar 

  • Vialou V, Feng J, Robison AJ, Nestler EJ (2013) Epigenetic mechanisms of depression and antidepressant action. Annu Rev Pharmacol Toxicol 53:59–87

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wittchen HU (1997) SKID-I: strukturiertes klinisches Interview für DSM-IV, Achse I: Psychische Störungen. Hogrefe, Goettingen

    Google Scholar 

  • Wong CC, Caspi A, Williams B, Craig IW, Houts R, Ambler A, Moffitt TE, Mill J (2010) A longitudinal study of epigenetic variation in twins. Epigenetics 5:516–526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshida K, Naito S, Takahashi H, Sato K, Ito K, Kamata M, Higuchi H, Shimizu T, Itoh K, Inoue K, Tezuka T, Suzuki T, Ohkubo T, Sugawara K, Otani K (2002) Monoamine oxidase: A gene polymorphism, tryptophan hydroxylase gene polymorphism and antidepressant response to fluvoxamine in Japanese patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 26:1279–1283

    Article  CAS  PubMed  Google Scholar 

  • Yu YW, Tsai SJ, Hong CJ, Chen TJ, Chen MC, Yang CW (2005) Association study of a monoamine oxidase a gene promoter polymorphism with major depressive disorder and antidepressant response. Neuropsychopharmacology 30:1719–1723

    Article  CAS  PubMed  Google Scholar 

  • Zill P, Baghai TC, Schüle C, Born C, Früstück C, Büttner A, Eisenmenger W, Varallo-Bedarida G, Rupprecht R, Möller HJ, Bondy B (2012) DNA methylation analysis of the angiotensin converting enzyme (ACE) gene in major depression. PLoS ONE 7:e40479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The present project was supported by the Doktor Robert Pfleger Stiftung and the Deutsche Forschungsgemeinschaft (DFG), SFB-TRR-58, project C02 (to KD, KPL and JD) as well as A05 (to KPL). We gratefully acknowledge the clinical support by Tilmann Roehrs and Jörn Lewin.

Ethical standards

The study was approved by the ethics committee of the University of Muenster, Germany. Written informed consent was obtained from all participating subjects prior to their inclusion in the study, and the study was conducted according to the ethical principles of the Helsinki Declaration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Domschke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domschke, K., Tidow, N., Schwarte, K. et al. Pharmacoepigenetics of depression: no major influence of MAO-A DNA methylation on treatment response. J Neural Transm 122, 99–108 (2015). https://doi.org/10.1007/s00702-014-1227-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-014-1227-x

Keywords

Navigation