Skip to main content
Log in

Aripiprazole increases NAD(P)H–quinone oxidoreductase-1 and heme oxygenase-1 in PC12 cells

  • Translational Neurosciences - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

We previously showed that aripiprazole increases intracellular NADPH and glucose-6-phosphate dehydrogenase mRNA in PC12 cells. Aripiprazole presumably activates a system that concurrently detoxifies reactive oxygen species and replenishes NADPH. Nrf2, a master transcriptional regulator of redox homeostasis genes, also activates the pentose phosphate pathway, including NADPH production. Therefore, our aim was to determine whether aripiprazole activates Nrf2 in PC12 cells. Aripiprazole increased mRNA expression of Nrf2-dependent genes (NAD(P)Hquinone oxidoreductase-1, Nqo1; heme oxygenase-1, HO1; and glutamate-cysteine ligase catalytic subunit) and protein expression of Nqo1 and HO1 in these cells (p < 0.05). To maintain increased Nrf2 activity, it is necessary to inhibit Nrf2 degradation; this is done by causing Nrf2 to dissociate from Keap1 or β-TrCP. However, in aripiprazole-treated cells, the relative amount of Nrf2 anchored to Keap1 or β-TrCP was unaffected and Nrf2 in the nuclear fraction decreased (p < 0.05). Aripiprazole did not affect phosphorylation of Nrf2 at Ser40 and decreased the relative amount of acetylated Nrf2 (p < 0.05). The increase in Nqo1 and HO1 in aripiprazole-treated cells cannot be explained by the canonical Nrf2-degrading pathways. Further experiments are needed to determine the biochemical mechanisms underlying the aripiprazole-induced increase in these enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

β-TrCP:

β-Transducin repeat-containing protein

DMEM:

Dulbecco’s modified Eagle’s medium

G6PD:

Glucose-6-phosphate dehydrogenase

Gcl-C:

Glutamate-cysteine ligase catalytic subunit

Gcl-M:

Glutamate-cysteine ligase modifier subunit

GSK3β:

Glycogen synthase kinase 3β

Gstp1:

Glutathione S-transferase π1

HO1:

Heme oxygenase-1

HPRT:

Hypoxanthine–guanine phosphoribosyltransferase

HRP:

Horseradish peroxidase

Ig:

Immunoglobulin

Keap1:

Kelch-like ECH-associating protein 1

MTHFD2:

Methylenetetrahydrofolate dehydrogenase 2

Nqo1:

NAD(P)H−quinone oxidoreductase-1

Nrf2:

NF-E2 p45-related factor 2

PAGE:

Polyacrylamide gel electrophoresis

PBS:

Phosphate-buffered saline

PI3K:

Phosphatidylinositide 3-kinase

PKC:

Protein kinase C

p-Akt (Ser473):

Akt phosphorylated at Ser473

p-Akt (Thr308):

Akt phosphorylated at Thr308

p-GSK3β (Ser9):

GSK3β phosphorylated at Ser9

p-Nrf2 (Ser40):

Nrf2 phosphorylated at Ser40

PPAT:

Phosphoribosyl pyrophosphate amidotransferase

ROS:

Reactive oxygen species

SDS:

Sodium dodecyl sulfate

Taldo:

Transaldolase

Tkt:

Transketolase

xc-system:

Anionic amino acid transporter light chain

xCT:

Xc-system member 11 (Slc7a11)

References

  • Alam J, Stewart D, Touchard C, Boinapally S, Choi AM, Cook JL (1999) Nrf2, a Cap‘n’Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem 274:26071–26078

    Article  CAS  PubMed  Google Scholar 

  • Banno K, Fujioka T, Kikuchi T, Oshiro Y, Hiyama T, Nakagawa K (1988) Studies on 2(1H)-quinolinone derivatives as neuroleptic agents I. Synthesis and biological activities of (4-phenyl-1-piperazinyl)propoxy-2(1H)-quinolinone derivatives. Chem Pharm Bull (Tokyo) 36:4377–4388

    Article  CAS  Google Scholar 

  • Berg JM, Tymoczko JL, Stryer L (2007) Biochemistry, 6th edn. WH Freeman and Company, New York

    Google Scholar 

  • Bloom DA, Jaiswal AK (2003) Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression. J Biol Chem 278:44675–44682

    Article  CAS  PubMed  Google Scholar 

  • Chowdhry S, Zhang Y, McMahon M, Sutherland C, Cuadrado A, Hayes JD (2013) Nrf2 is controlled by two distinct β-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. Oncogene 32:3765–3781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, Mangal D, Yu KH, Yeo CJ, Calhoun ES, Scrimieri F, Winter JM, Hruban RH, Iacobuzio-Donahue C, Kern SE, Blair IA, Tuveson DA (2011) Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475:106–109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Doble BW, Woodgett JR (2003) GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 116:1175–1186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Emiliani FE, Sedlack TW, Sawa A (2014) Oxidative stress and schizophrenia: recent breakthroughs from an old story. Curr Opin Psychiatry 27:185–190

    Article  PubMed Central  PubMed  Google Scholar 

  • Eren I, Naziroğlu M, Demirdaş A (2007) Protective effects of lamotrigine, aripiprazole and escitalopram on depression-induced oxidative stress in rat brain. Neurochem Res 32:1188–1195

    Article  CAS  PubMed  Google Scholar 

  • Evans DR, Parikh VV, Khan MM, Coussons C, Buckley PF, Mahadik SP (2003) Red blood cell membrane essential fatty acid metabolism in early psychotic patients following antipsychotic drug treatment. Prostaglandins Leukot Essent Fatty Acids 69:393–399

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowotz JD (2014) Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510:298–302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Franke TF (2008) PI3K/Akt: getting it right matters. Oncogene 27:6473–6488

    Article  CAS  PubMed  Google Scholar 

  • Harrison EM, McNally SJ, Devey L, Garden OJ, Ross JA, Wigmore SJ (2006) Insulin induces heme oxygenase-1 through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in renal cells. FEBS J 273:2345–2356

    Article  CAS  PubMed  Google Scholar 

  • Hayes JD, McMahon M (2009) NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci 34:176–188

    Article  CAS  PubMed  Google Scholar 

  • Horrobin DF (1999) Lipid metabolism, human evolution and schizophrenia. Prostaglandins Leukot Essent Fatty Acids 60:431–437

    Article  CAS  PubMed  Google Scholar 

  • Huang HC, Nguyen T, Pickett CB (2000) Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2. Proc Natl Acad Sci USA 97:12475–12480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236:313–322

    Article  CAS  PubMed  Google Scholar 

  • Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13:76–86

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jain AK, Bloom DA, Jaiswal AK (2005) Nuclear import and export signals in control of Nrf2. J Biol Chem 280:29158–29168

    Article  CAS  PubMed  Google Scholar 

  • Kaspar JW, Niture SK, Jaiswal AK (2009) Nrf 2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med 47:1304–1309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kawai Y, Garduño L, Theodore M, Yang J, Arinze IJ (2011) Acetylation-deacetylation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) regulates its transcriptional activity and nucleocytoplasmic localization. J Biol Chem 286:7629–7640

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1–Nrf2–ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116

    Article  CAS  PubMed  Google Scholar 

  • Keum YS, Yu S, Chang PP, Yuan X, Kim JH, Xu C, Han J, Agarwal A, Kong AN (2006) Mechanism of action of sulforaphane: inhibition of p38 mitogen-activated protein kinase isoforms contributing to the induction of antioxidant response element-mediated heme oxygenase-1 in human hepatoma HepG2 cells. Cancer Res 66:8804–8813

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi T, Tottori K, Uwahodo Y, Hirose T, Miwa T, Oshiro Y, Morita S (1995) 7-(4-[4-(2,3-Dichlorophenyl)-1-piperazinyl]butyloxy)-3,4-dihydro-2(1H)-quinolinone (OPC-14597), a new putative antipsychotic drug with both presynaptic dopamine autoreceptor agonistic activity and postsynaptic D2 receptor antagonistic activity. J Pharmacol Exp Ther 274:329–336

    CAS  PubMed  Google Scholar 

  • Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, Yamamoto M (2004) Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 24:7130–7139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mahadik SP, Evans DR (2003) Is schizophrenia a metabolic brain disorder? Membrane phospholipid dysregulation and its therapeutic implications. Psychiatr Clin N Am 26:85–102

    Article  Google Scholar 

  • McMahon M, Itoh K, Yamamoto M, Chanas SA, Henderson CJ, McLellan LI, Wolf CR, Cavin C, Hayes JD (2001) The Cap‘n’Collar basic leucine zipper transcription factor Nrf2 (NF-E2 p45-related factor 2) controls both constitutive and inducible expression of intestinal detoxification and glutathione biosynthetic enzymes. Cancer Res 61:3299–3307

    CAS  PubMed  Google Scholar 

  • Miljević Č, Nikolić-Kokić A, Nikolić M, Niketić V, Spasić MB, Lečić-Toševski D, Blagojević D (2013) Effect of atypical antipsychotics on antioxidant enzyme activities in human erythrocytes (in vitro study). Hum Psychopharmacol 28:1–6

    Article  PubMed  Google Scholar 

  • Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T, Aburatani H, Yamamoto M, Motohashi H (2012) Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 22:66–79

    Article  CAS  PubMed  Google Scholar 

  • Moi P, Chan K, Asunis I, Cao A, Kan YW (1994) Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the & #x03B2;-globin locus control region. Proc Natl Acad Sci USA 91:9926–9930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moinova HR, Mulcahy RT (1999) Up-regulation of the human & #x03B3;-glutamylcysteine synthetase regulatory subunit gene involves binding of Nrf-2 to an electrophile responsive element. Biochem Biophys Res Commun 261:661–668

    Article  CAS  PubMed  Google Scholar 

  • Nagasaki H, Nakashima A, Kaneko YS, Kodani Y, Takayanagi T, Itoh M, Kondo K, Nagatsu T, Hamada Y, Ota M, Ota A (2014) Aripiprazole increases NADPH level in PC12 cells: the role of NADPH oxidase. J Neural Transm 121:91–103

    Article  CAS  PubMed  Google Scholar 

  • Nakaso K, Yano H, Fukuhara Y, Takeshima T, Wada-Isoe K, Nakashima K (2003) PI3K is a key molecule in the Nrf2-mediated regulation of antioxidative proteins by hemin in human neuroblastoma cells. FEBS Lett 546:181–184

    Article  CAS  PubMed  Google Scholar 

  • Nioi P, McMahon M, Itoh K, Yamamoto M, Hayes JD (2003) Identification of a novel Nrf2-regulated antioxidant response element (ARE) in the mouse NAD(P)H:quinone oxidoreductase 1 gene: reassessment of the ARE consensus sequence. Biochem J 374:337–348

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oshiro Y, Sato S, Kurahashi N, Tanaka T, Kikuchi T, Tottori K, Uwahodo Y, Nishi T (1998) Novel antipsychotic agents with dopamine autoreceptor agonist properties: synthesis and pharmacology of 7-[4-(4-Phenyl-1-piperazinyl)butoxy]-3,4-dihydro-2(1H)-quinolinone derivatives. J Med Chem 41:658–667

    Article  CAS  PubMed  Google Scholar 

  • Ota A, Nakashima A, Kaneko YS, Mori K, Nagasaki H, Takayanagi T, Itoh M, Kondo K, Nagatsu T, Ota M (2012) Effects of aripiprazole and clozapine on the treatment of glycolytic carbon in PC12 cells. J Neural Transm 119:1327–1342

    Article  CAS  PubMed  Google Scholar 

  • Park SW, Lee CH, Lee JG, Kim LW, Shin BS, Lee BJ, Kim YH (2011) Protective effects of atypical antipsychotic drugs against MPP+-induced oxidative stress in PC12 cells. Neurosci Res 69:283–290

    Article  CAS  PubMed  Google Scholar 

  • Pillai A, Parikh V, Terry AV Jr, Mahadik SP (2007) Long-term antipsychotic treatments and crossover studies in rats: differential effects of typical and atypical agents on the expression of antioxidant enzymes and membrane lipid peroxidation in rat brain. J Psychiatr Res 41:372–386

    Article  PubMed  Google Scholar 

  • Qi H, Han Y, Rong J (2012) Potential roles of PI3K/Akt and Nrf2–Keap1 pathways in regulating hormesis of Z-ligustilide in PC12 cells against oxygen and glucose deprivation. Neuropharmacology 62:1659–1670

    Article  CAS  PubMed  Google Scholar 

  • Rada P, Rojo AI, Chowdhry S, McMahon M, Hayes JD, Cuadrado A (2011) SCF/β-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol Cell Biol 31:1121–1133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rojo AI, Sagarra MR, Cuadrado A (2008a) GSK-3β down-regulates the transcription factor Nrf2 after oxidant damage: relevance to exposure of neuronal cells to oxidative stress. J Neurochem 105:192–202

    Article  CAS  PubMed  Google Scholar 

  • Rojo AI, Rada P, Egea J, Rosa AO, López MG, Cuadrado A (2008b) Functional interference between glycogen synthase kinase-3 beta and the transcription factor Nrf2 in protection against kainate-induced hippocampal cell death. Mol Cell Neurosci 39:125–132

    Article  CAS  PubMed  Google Scholar 

  • Rotblat B, Southwell AL, Ehrnhoefer DE, Skotte NH, Metzler M, Franciosi S, Leprivier G, Somasekharan SP, Barokas A, Deng Y, Tang T, Mathers J, Cetinbas N, Daugaard M, Kwok B, Li L, Carnie CJ, Fink D, Nitsch R, Galpin JD, Ahern CA, Melino G, Penninger JM, Hayden MR, Sorensen PH (2014) HACE1 reduces oxidative stress and mutant Huntingtin toxicity by promoting the NRF2 response. Proc Natl Acad Sci USA 111:3032–3037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salazar M, Rojo AI, Velasco D, de Sagarra RM, Cuadrado A (2006) Glycogen synthase kinase-3β inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2. J Biol Chem 281:14841–14851

    Article  CAS  PubMed  Google Scholar 

  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101

    Article  CAS  PubMed  Google Scholar 

  • Sasaki H, Sato H, Kuriyama-Matsumura K, Sato K, Maebara K, Wang H, Tamba M, Itoh K, Yamamoto M, Bannai S (2002) Electrophile response element-mediated induction of the cystine/glutamate exchange transporter gene expression. J Biol Chem 277:44765–44771

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Boldin-Adamsky S, Thimmulappa RK, Rath SK, Ashush H, Coulter J, Blackford A, Goodman SN, Bunz F, Watson WH, Gabrielson E, Feinstein E, Biswal S (2008) RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res 68:7975–7984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh A, Happel C, Manna SK, Acquaah-Mensah G, Carrerero J, Kumar S, Nasipuri P, Krausz KW, Wakabayashi N, Dewi R, Boros LG, Gonzalez FJ, Gabrielson E, Wong KK, Girnun G, Biswal S (2013) Transcription factor NRF2 regulates miR-1 and miR-206 to drive tumorigenesis. J Clin Invest 123:2921–2934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • So HS, Kim HJ, Lee JH, Lee JH, Park SY, Park C, Kim YH, Kim JK, Lee KM, Kim KS, Chung SY, Jang WC, Moon SK, Chung HT, Park RK (2006) Flunarizine induces Nrf2-mediated transcriptional activation of heme oxygenase-1 in protection of auditory cells from cisplatin. Cell Death Differ 13:1763–1775

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Chin YE, Zhang DD (2009a) Acetylation of Nrf2 by p300/CBP augments promoter-specific DNA binding of Nrf2 during the antioxidant response. Mol Cell Biol 29:2658–2672

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun Z, Huang Z, Zhang DD (2009b) Phosphorylation of Nrf2 at multiple sites by MAP kinases has a limited contribution in modulating the Nrf2-dependent antioxidant response. PLoS ONE 4:e6588

    Article  PubMed Central  PubMed  Google Scholar 

  • Takami G, Ota M, Nakashima A, Kaneko YS, Mori K, Nagatsu T, Ota A (2010) Effects of atypical antipsychotics and haloperidol on PC12 cells: only aripiprazole phosphorylates AMP-activated protein kinase. J Neural Transm 117:1139–1153

    Article  CAS  PubMed  Google Scholar 

  • Theodore M, Kawai Y, Yang J, Kleshchenko Y, Reddy SP, Villalta F, Arinze IJ (2008) Multiple nuclear localization signals function in the nuclear import of the transcription factor Nrf2. J Biol Chem 283:8984–8994

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Venugopal R, Jaiswal AK (1996) Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene. Proc Natl Acad Sci USA 93:14960–14965

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu JQ, Kosten TR, Zhang XY (2013) Free radicals, antioxidant defense systems, and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 46:200–206

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Yuan X, Pan Z, Shen G, Kim JH, Yu S, Khor TO, Li W, Ma J, Kong AN (2006) Mechanism of action of isothiocyanates: the induction of ARE-regulated genes is associated with activation of ERK and JNK and the phosphorylation and nuclear translocation of Nrf2. Mol Cancer Ther 5:1918–1926

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants-in-aid from Fujita Health University to AO and YSK and by grants-in-aid from Kinjo University to KM.

Conflict of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Ota.

Additional information

Y. S. Kaneko and T. Takayanagi contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaneko, Y.S., Takayanagi, T., Nagasaki, H. et al. Aripiprazole increases NAD(P)H–quinone oxidoreductase-1 and heme oxygenase-1 in PC12 cells. J Neural Transm 122, 757–772 (2015). https://doi.org/10.1007/s00702-014-1350-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-014-1350-8

Keywords

Navigation