Skip to main content

Advertisement

Log in

1H- and 13C-NMR spectroscopy of Thy-1-APPSL mice brain extracts indicates metabolic changes in Alzheimer’s disease

  • Neurology and Preclinical Neurological Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Biochemical alterations underlying the symptoms and pathomechanisms of Alzheimer’s disease (AD) are not fully understood. However, alterations of glucose metabolism and mitochondrial dysfunction certainly play an important role. 1H- and 13C-NMR spectroscopy exhibits promising results in providing information about those alterations in vivo in patients and animals, especially regarding the mitochondrial tricarboxylic acid (TCA) cycle. Accordingly, transgenic mice expressing mutant human amyloid precursor protein (APPSL)—serving as a model of neuropathological changes in AD—were examined with in vitro 1D 1H- and 2D 1H-13C-HSQC-NMR spectroscopy after oral administration of 1-13C-glucose and acquisition of brain material after 30 min. Perchloric acid extracts were measured using a 500 MHz spectrometer, providing more detailed information compared to in vivo spectra achievable nowadays. Area under curve (AUC) data of metabolite peaks were obtained and normalized in relation to the creatine signal, serving as internal reference. Besides confirming well-known metabolic alterations in AD like decreased N-acetylaspartate (NAA)/Creatine (Cr) ratio, new findings such as a decrease in phosphorylcholine (PC) are presented. Glutamate (Glu) and glutamine (Gln) concentrations were decreased while γ-aminobutyric acid (GABA) was elevated in Thy1-APPSL mice. 13C-NMR spectroscopy revealed a shift in the Glx-2/Glx-4-ratio—where Glx represents a combined Glu/Gln-signal—towards Glx-2 in AD. These findings correlated well with the NAA/Cr-ratio. The Gln-4/Glu-4-ratio is altered in favor of Glu. Our findings suggest that glutamine synthetase (GS), which is predominantly present in glial cells may be impaired in the brain of Thy1-APPSL transgenic mice. Since GS is an ATP-dependent enzyme, mitochondrial dysfunction might contribute to reduced activity, which might also account for the increased metabolism of glutamate via the GABA shunt, a metabolic pathway to bypass intra-mitochondrial α-ketoglutarate-dehydrogenase, resulting in elevated GABA levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ackl N, Ising M, Schreiber YA, Atiya M, Sonntag A, Auer DP (2005) Hippocampal metabolic abnormalities in mild cognitive impairment and Alzheimer’s disease. Neurosci Lett 384(1–2):23–28. doi:10.1016/j.neulet.2005.04.035

    Article  CAS  PubMed  Google Scholar 

  • Antuono PG, Jones JL, Wang Y, Li SJ (2001a) Decreased glutamate + glutamine in Alzheimer’s disease detected in vivo with (1)H-MRS at 0.5 T. Neurology 56(6):737–742

    Article  CAS  PubMed  Google Scholar 

  • Antuono PG, Jones JL, Wang Y, Li SJ (2001b) Decreased glutamate + glutamine in Alzheimer’s disease detected in vivo with (1)H-MRS at 0.5 T 11353. Neurology 56(6):737–742

    Article  CAS  PubMed  Google Scholar 

  • Bates TE, Strangward M, Keelan J, Davey GP, Munro PM, Clark JB (1996) Inhibition of N-acetylaspartate production: implications for 1H MRS studies in vivo. NeuroReport 7(8):1397–1400

    Article  CAS  PubMed  Google Scholar 

  • Bernstein HG, Bannier J, Meyer-Lotz G, Steiner J, Keilhoff G, Dobrowolny H, Walter M, Bogerts B (2014) Distribution of immunoreactive glutamine synthetase in the adult human and mouse brain. Qualitative and quantitative observations with special emphasis on extra-astroglial protein localization. J Chem Neuroanat 61–62:33–50. doi:10.1016/j.jchemneu.2014.07.003

    Article  PubMed  Google Scholar 

  • Bottomley PA, Cousins JP, Pendrey DL, Wagle WA, Hardy CJ, Eames FA, McCaffrey RJ, Thompson DA (1992) Alzheimer dementia: quantification of energy metabolism and mobile phosphoesters with P-31 NMR spectroscopy. Radiology 183(3):695–699. doi:10.1148/radiology.183.3.1584923

    Article  CAS  PubMed  Google Scholar 

  • Brooks WM, Friedman SD, Stidley CA (1999) Reproducibility of 1H-MRS in vivo. Magn Reson Med 41(1):193–197

    Article  CAS  PubMed  Google Scholar 

  • Brooks WM, Stidley CA, Petropoulos H, Jung RE, Weers DC, Friedman SD, Barlow MA, Sibbitt WL Jr, Yeo RA (2000) Metabolic and cognitive response to human traumatic brain injury: a quantitative proton magnetic resonance study. J Neurotrauma 17(8):629–640. doi:10.1089/089771500415382

    Article  CAS  PubMed  Google Scholar 

  • Burbaeva G, Boksha IS, Tereshkina EB, Savushkina OK, Starodubtseva LI, Turishcheva MS (2005) Glutamate metabolizing enzymes in prefrontal cortex of Alzheimer’s disease patients. Neurochem Res 30(11):1443–1451. doi:10.1007/s11064-005-8654-x

    Article  CAS  PubMed  Google Scholar 

  • Burri R, Bigler P, Straehl P, Posse S, Colombo JP, Herschkowitz N (1990) Brain development: 1H magnetic resonance spectroscopy of rat brain extracts compared with chromatographic methods. Neurochem Res 15(10):1009–1016

    Article  CAS  PubMed  Google Scholar 

  • Chantal S, Braun CM, Bouchard RW, Labelle M, Boulanger Y (2004) Similar 1H magnetic resonance spectroscopic metabolic pattern in the medial temporal lobes of patients with mild cognitive impairment and Alzheimer disease. Brain Res 1003(1–2):26–35. doi:10.1016/j.brainres.2003.11.074

    Article  CAS  PubMed  Google Scholar 

  • Choi JK, Dedeoglu A, Jenkins BG (2007) Application of MRS to mouse models of neurodegenerative illness. NMR Biomed 20(3):216–237. doi:10.1002/nbm.1145

    Article  PubMed  Google Scholar 

  • Cuadrado-Tejedor M, Cabodevilla JF, Zamarbide M, Gomez-Isla T, Franco R, Perez-Mediavilla A (2013) Age-related mitochondrial alterations without neuronal loss in the hippocampus of a transgenic model of Alzheimer’s disease. Curr Alzheimer Res 10(4):390–405

    Article  CAS  PubMed  Google Scholar 

  • Czech C, Delaere P, Macq AF, Reibaud M, Dreisler S, Touchet N, Schombert B, Mazadier M, Mercken L, Theisen M, Pradier L, Octave JN, Beyreuther K, Tremp G (1997) Proteolytical processing of mutated human amyloid precursor protein in transgenic mice. Brain Res Mol Brain Res 47(1–2):108–116

    Article  CAS  PubMed  Google Scholar 

  • De Stefano N, Matthews PM, Narayanan S, Francis GS, Antel JP, Arnold DL (1997) Axonal dysfunction and disability in a relapse of multiple sclerosis: longitudinal study of a patient. Neurology 49(4):1138–1141

    Article  PubMed  Google Scholar 

  • Dedeoglu A, Choi JK, Cormier K, Kowall NW, Jenkins BG (2004) Magnetic resonance spectroscopic analysis of Alzheimer’s disease mouse brain that express mutant human APP shows altered neurochemical profile. Brain Res 1012(1–2):60–65. doi:10.1016/j.brainres.2004.02.079

    Article  CAS  PubMed  Google Scholar 

  • Doraiswamy PM, Charles HC, Krishnan KR (1998) Prediction of cognitive decline in early Alzheimer’s disease. Lancet 352(9141):1678. doi:10.1016/s0140-6736(05)61449-3

    Article  CAS  PubMed  Google Scholar 

  • Eckert GP, Renner K, Eckert SH, Eckmann J, Hagl S, Abdel-Kader RM, Kurz C, Leuner K, Muller WE (2012) Mitochondrial dysfunction—a pharmacological target in Alzheimer’s disease. Mol Neurobiol 46(1):136–150. doi:10.1007/s12035-012-8271-z

    Article  CAS  PubMed  Google Scholar 

  • Ernst T, Chang L, Melchor R, Mehringer CM (1997) Frontotemporal dementia and early Alzheimer disease: differentiation with frontal lobe H-1 MR spectroscopy 11354. Radiology 203(3):829–836

    Article  CAS  PubMed  Google Scholar 

  • Friedland-Leuner K, Stockburger C, Denzer I, Eckert GP, Muller WE (2014) Mitochondrial dysfunction: cause and consequence of Alzheimer’s disease. Prog Mol Biol Transl Sci 127:183–210. doi:10.1016/b978-0-12-394625-6.00007-6

    Article  PubMed  Google Scholar 

  • Golde TE, Dickson D, Hutton M (2006) Filling the gaps in the abeta cascade hypothesis of Alzheimer’s disease. Curr Alzheimer Res 3(5):421–430

    Article  CAS  PubMed  Google Scholar 

  • Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8(2):101–112

    Article  CAS  PubMed  Google Scholar 

  • Hattori N, Abe K, Sakoda S, Sawada T (2002) Proton MR spectroscopic study at 3 Tesla on glutamate/glutamine in Alzheimer’s disease 11352. NeuroReport 13(1):183–186

    Article  CAS  PubMed  Google Scholar 

  • Herminghaus S, Frolich L, Gorriz C, Pilatus U, Dierks T, Wittsack HJ, Lanfermann H, Maurer K, Zanella FE (2003) Brain metabolism in Alzheimer disease and vascular dementia assessed by in vivo proton magnetic resonance spectroscopy. Psychiatry Res 123(3):183–190

    Article  CAS  PubMed  Google Scholar 

  • Hertz L, Dringen R, Schousboe A, Robinson SR (1999) Astrocytes: glutamate producers for neurons. J Neurosci Res 57(4):417–428

    Article  CAS  PubMed  Google Scholar 

  • Hoyer S (2004a) Causes and consequences of disturbances of cerebral glucose metabolism in sporadic Alzheimer disease: therapeutic implications. Adv Exp Med Biol 541:135–152

    Article  CAS  PubMed  Google Scholar 

  • Hoyer S (2004b) Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur J Pharmacol 490(1–3):115–125. doi:10.1016/j.ejphar.2004.02.049

    Article  CAS  PubMed  Google Scholar 

  • Jones RS, Waldman AD (2004) 1H-MRS evaluation of metabolism in Alzheimer’s disease and vascular dementia 11351. Neurol Res 26(5):488–495

    Article  CAS  PubMed  Google Scholar 

  • Karelson G, Ziegler A, Kunnecke B, Seelig J (2003) Feeding versus infusion: a novel approach to study the NAA metabolism in rat brain. NMR Biomed 16(6–7):413–423. doi:10.1002/nbm.845

    Article  CAS  PubMed  Google Scholar 

  • Klunk WE, Panchalingam K, Moossy J, McClure RJ, Pettegrew JW (1992) N-acetyl-L-aspartate and other amino acid metabolites in Alzheimer’s disease brain: a preliminary proton nuclear magnetic resonance study. Neurology 42(8):1578–1585

    Article  CAS  PubMed  Google Scholar 

  • Klunk WE, Xu C, Panchalingam K, McClure RJ, Pettegrew JW (1996) Quantitative 1 H and 31 P MRS of PCA extracts of postmortem Alzheimer’s disease brain. Neurobiol Aging 17(3):349–357

    Article  CAS  PubMed  Google Scholar 

  • Klunk WE, Panchalingam K, McClure RJ, Stanley JA, Pettegrew JW (1998) Metabolic alterations in postmortem Alzheimer’s disease brain are exaggerated by Apo-E4. Neurobiol Aging 19(6):511–515

    Article  CAS  PubMed  Google Scholar 

  • Kulijewicz-Nawrot M, Sykova E, Chvatal A, Verkhratsky A, Rodriguez JJ (2013) Astrocytes and glutamate homoeostasis in Alzheimer’s disease: a decrease in glutamine synthetase, but not in glutamate transporter-1, in the prefrontal cortex. ASN Neuro 5(4):273–282. doi:10.1042/an20130017

    Article  CAS  PubMed  Google Scholar 

  • Kwo-On-Yuen PF, Newmark RD, Budinger TF, Kaye JA, Ball MJ, Jagust WJ (1994) Brain N-acetyl-l-aspartic acid in Alzheimer’s disease: a proton magnetic resonance spectroscopy study. Brain Res 667(2):167–174

    Article  CAS  PubMed  Google Scholar 

  • Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, Viola KL, Klein WL (2007) Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27(4):796–807

    Article  CAS  PubMed  Google Scholar 

  • Lalande J, Halley H, Balayssac S, Gilard V, Dejean S, Martino R, Frances B, Lassalle JM, Malet-Martino M (2014) 1H NMR metabolomic signatures in five brain regions of the AbetaPPswe Tg2576 mouse model of Alzheimer’s disease at four ages. J Alzheimers Dis 39(1):121–143. doi:10.3233/jad-130023

    CAS  PubMed  Google Scholar 

  • Lanctot KL, Herrmann N, Mazzotta P, Khan LR, Ingber N (2004) GABAergic function in Alzheimer’s disease: evidence for dysfunction and potential as a therapeutic target for the treatment of behavioural and psychological symptoms of dementia. Can J Psychiatry Revue Canadienne de Psychiatrie 49(7):439–453

    Google Scholar 

  • Lazeyras F, Charles HC, Tupler LA, Erickson R, Boyko OB, Krishnan KR (1998) Metabolic brain mapping in Alzheimer’s disease using proton magnetic resonance spectroscopy. Psychiatry Res 82(2):95–106

    Article  CAS  PubMed  Google Scholar 

  • Leuner K, Schütt T, Kurz C, Eckert SH, Schiller C, Occhipinti A, Mai S, Jendrach M, Eckert GP, Kruse SE, Palmiter RD, Brandt U, Dröse S, Wittig I, Willem M, Haass C, Reichert AS, Müller WE (2012) Mitochondrion-derived reactive oxygen species lead to enhanced amyloid beta formation. Antioxid Redox Signal 16(12):1421–1433. doi:10.1089/ars.2011.4173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lowe SL, Francis PT, Procter AW, Palmer AM, Davison AN, Bowen DM (1988) Gamma-aminobutyric acid concentration in brain tissue at two stages of Alzheimer’s disease. Brain 111(Pt 4):785–799

    Article  PubMed  Google Scholar 

  • Mamelak M (2012) Sporadic Alzheimer’s disease: the starving brain. J Alzheimers Dis 31(3):459–474. doi:10.3233/jad-2012-120370

    PubMed  Google Scholar 

  • Marjanska M, Curran GL, Wengenack TM, Henry PG, Bliss RL, Poduslo JF, Jack CR Jr, Ugurbil K, Garwood M (2005) Monitoring disease progression in transgenic mouse models of Alzheimer’s disease with proton magnetic resonance spectroscopy. Proc Natl Acad Sci USA 102(33):11906–11910. doi:10.1073/pnas.0505513102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430(7000):631–639

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mlynarik V, Cacquevel M, Sun-Reimer L, Janssens S, Cudalbu C, Lei H, Schneider BL, Aebischer P, Gruetter R (2012) Proton and phosphorus magnetic resonance spectroscopy of a mouse model of Alzheimer’s disease. J Alzheimers Dis 31(Suppl 3):S87–99. doi:10.3233/jad-2012-112072

    PubMed  Google Scholar 

  • Moats RA, Ernst T, Shonk TK, Ross BD (1994) Abnormal cerebral metabolite concentrations in patients with probable Alzheimer disease. Magn Reson Med 32(1):110–115

    Article  CAS  PubMed  Google Scholar 

  • Mohanakrishnan P, Fowler AH, Vonsattel JP, Husain MM, Jolles PR, Liem P, Komoroski RA (1995) An in vitro 1H nuclear magnetic resonance study of the temporoparietal cortex of Alzheimer brains. Exp Brain Res 102(3):503–510

    Article  CAS  PubMed  Google Scholar 

  • Nitsch RM, Blusztajn JK, Pittas AG, Slack BE, Growdon JH, Wurtman RJ (1992) Evidence for a membrane defect in Alzheimer disease brain. Proc Natl Acad Sci USA 89(5):1671–1675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parnetti L, Tarducci R, Presciutti O, Lowenthal DT, Pippi M, Palumbo B, Gobbi G, Pelliccioli GP, Senin U (1997) Proton magnetic resonance spectroscopy can differentiate Alzheimer’s disease from normal aging. Mech Ageing Dev 97(1):9–14

    Article  CAS  PubMed  Google Scholar 

  • Robinson SR (2000) Neuronal expression of glutamine synthetase in Alzheimer’s disease indicates a profound impairment of metabolic interactions with astrocytes. Neurochem Int 36(4–5):471–482

    Article  CAS  PubMed  Google Scholar 

  • Rose SE, de Zubicaray GI, Wang D, Galloway GJ, Chalk JB, Eagle SC, Semple J, Doddrell DM (1999) A 1H MRS study of probable Alzheimer’s disease and normal aging: implications for longitudinal monitoring of dementia progression. Magn Reson Imaging 17(2):291–299

    Article  CAS  PubMed  Google Scholar 

  • Satlin A, Bodick N, Offen WW, Renshaw PF (1997) Brain proton magnetic resonance spectroscopy (1H-MRS) in Alzheimer’s disease: changes after treatment with xanomeline, an M1 selective cholinergic agonist. Am J Psychiatry 154(10):1459–1461

    Article  CAS  PubMed  Google Scholar 

  • Schuff N, Capizzano AA, Du AT, Amend DL, O’Neill J, Norman D, Kramer J, Jagust W, Miller B, Wolkowitz OM, Yaffe K, Weiner MW (2002) Selective reduction of N-acetylaspartate in medial temporal and parietal lobes in AD. Neurology 58(6):928–935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seidl R, Cairns N, Singewald N, Kaehler ST, Lubec G (2001) Differences between GABA levels in Alzheimer’s disease and Down syndrome with Alzheimer-like neuropathology 11346. Naunyn Schmiedebergs ArchPharmacol 363(2):139–145

    Article  CAS  Google Scholar 

  • Sweet RA, Panchalingam K, Pettegrew JW, McClure RJ, Hamilton RL, Lopez OL, Kaufer DI, DeKosky ST, Klunk WE (2002) Psychosis in Alzheimer disease: postmortem magnetic resonance spectroscopy evidence of excess neuronal and membrane phospholipid pathology. Neurobiol Aging 23(4):547–553 (S019745800200009X [pii])

    Article  CAS  PubMed  Google Scholar 

  • Tillakaratne NJ, Medina-Kauwe L, Gibson KM (1995) Gamma-aminobutyric acid (GABA) metabolism in mammalian neural and nonneural tissues. Comp Biochem Physiol Part A Physiol 112(2):247–263

    Article  CAS  Google Scholar 

  • Timmer NM, Herbert MK, Claassen JA, Kuiperij HB, Verbeek MM (2014) Total glutamine synthetase levels in cerebrospinal fluid of Alzheimer’s disease patients are unchanged. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2014.12.010

    PubMed  Google Scholar 

  • Tumani H, Shen G, Peter JB, Bruck W (1999) Glutamine synthetase in cerebrospinal fluid, serum, and brain: a diagnostic marker for Alzheimer disease? Arch Neurol 56(10):1241–1246

    Article  CAS  PubMed  Google Scholar 

  • Vermeiren Y, Le Bastard N, Clark CM, Engelborghs S, De Deyn PP (2011) Serum glutamine synthetase has no value as a diagnostic biomarker for Alzheimer’s disease. Neurochem Res 36(10):1858–1862. doi:10.1007/s11064-011-0504-4

    Article  CAS  PubMed  Google Scholar 

  • von Kienlin M, Kunnecke B, Metzger F, Steiner G, Richards JG, Ozmen L, Jacobsen H, Loetscher H (2005) Altered metabolic profile in the frontal cortex of PS2APP transgenic mice, monitored throughout their life span. Neurobiol Dis 18(1):32–39. doi:10.1016/j.nbd.2004.09.005

    Article  Google Scholar 

  • Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416(6880):535–539

    Article  CAS  PubMed  Google Scholar 

  • Woo DC, Lee SH, Lee DW, Kim SY, Kim GY, Rhim HS, Choi CB, Kim HY, Lee CU, Choe BY (2010) Regional metabolic alteration of Alzheimer’s disease in mouse brain expressing mutant human APP-PS1 by 1H HR-MAS. Behav Brain Res 211(1):125–131. doi:10.1016/j.bbr.2010.03.026

    Article  CAS  PubMed  Google Scholar 

  • Yeh CY, Verkhratsky A, Terzieva S, Rodriguez JJ (2013) Glutamine synthetase in astrocytes from entorhinal cortex of the triple transgenic animal model of Alzheimer’s disease is not affected by pathological progression. Biogerontology 14(6):777–787. doi:10.1007/s10522-013-9456-1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Claudia Jourdan, and Dr. Löhr for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Eckert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doert, A., Pilatus, U., Zanella, F. et al. 1H- and 13C-NMR spectroscopy of Thy-1-APPSL mice brain extracts indicates metabolic changes in Alzheimer’s disease. J Neural Transm 122, 541–550 (2015). https://doi.org/10.1007/s00702-015-1387-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-015-1387-3

Keywords

Navigation