Skip to main content
Log in

Melperone but not bisoprolol or metoprolol is a clinically relevant inhibitor of CYP2D6: evidence from a therapeutic drug monitoring survey

  • Psychiatry and Preclinical Psychiatric Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Cytochrome P450 enzymes (CYP) can be inhibited or induced by drugs, resulting in clinically significant drug–drug interactions that can cause unanticipated adverse reactions or therapeutic failures. The objective of the study was to analyze the in vivo inhibitory potential of the beta-blockers bisoprolol and metoprolol as well as the low-potency antipsychotic melperone on CYP2D6. By utilizing a large therapeutic drug monitoring database of 2874 samples, data from patients who had been treated with venlafaxine (VEN) either without (control group) or with a concomitant medication with bisoprolol, metoprolol or melperone were evaluated retrospectively to study the CYP2D6-catalyzed O-demethylation to O-desmethylvenlafaxine (ODVEN). Dose-adjusted serum levels (C/D) of VEN and ODVEN as well as the metabolic ratios (ODVEN/VEN) were computed for the four groups and compared using Kruskal–Wallis test. In total, 381 patients could be included for analysis. No significant difference was found in the median C/D (VEN), C/D (ODVEN) or C/D of the active moiety (VEN + ODVEN) in either the metoprolol (N = 103) or bisoprolol group (N = 101), compared to the control group (N = 108). In contrast, a significantly higher median C/D (VEN) (0.79 ng/ml/mg, range 0.13–5.73 ng/ml/mg) (P < 0.01) was found in the melperone group (N = 69), compared to the control group (0.46 ng/ml/mg, range 0.02–7.39 ng/ml/mg). A significant decrease (P < 0.01) was solely found in the median metabolic ratios of ODVEN/VEN between the melperone group (0.90, range 0.14–15.15), compared to the control group (2.39, range 0.06–15.31). The results of this study provided evidence that melperone but not bisoprolol or metoprolol has a clinically relevant inhibitory potential on CYP2D6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bax ND, Lennard MS, Tucker GT (1981) Inhibition of antipyrine metabolism by beta-adrenoceptor antagonists. Br J Clin Pharmacol 12:779–784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Borg KO, Carlsson E, Hoffmann KJ, Jonsson TE, Thorin H, Wallin B (1975) Metabolism of metoprolol-(3-h) in man, the dog and the rat. Acta Pharmacol Toxicol 36:125–135

    Article  CAS  Google Scholar 

  • Cadieux RJ (1989) Drug interactions in the elderly. How multiple drug use increases risk exponentially. Postgrad Med 86:179–186

    CAS  PubMed  Google Scholar 

  • Christensson EG (1989) Pharmacological data of the atypical neuroleptic compound melperone (Buronil). Acta Psychiatr Scand Suppl 352:7–15

    Article  CAS  PubMed  Google Scholar 

  • Eichelbaum M, Kroemer HK, Fromm MF (1997) Impact of P450 genetic polymorphism on the first-pass extraction of cardiovascular and neuroactive drugs. Adv Drug Deliv Rev 27:171–199

    Article  PubMed  Google Scholar 

  • Fogelman SM, Schmider J, Venkatakrishnan K, von Moltke LL, Harmatz JS, Shader RI, Greenblatt DJ (1999) O- and N-demethylation of venlafaxine in vitro by human liver microsomes and by microsomes from cDNA-transfected cells: effect of metabolic inhibitors and SSRI antidepressants. Neuropsychopharmacology 20:480–490. doi:10.1016/s0893-133x(98)00113-4

    Article  CAS  PubMed  Google Scholar 

  • Fukuda T, Nishida Y, Zhou Q, Yamamoto I, Kondo S, Azuma J (2000) The impact of the CYP2D6 and CYP2C19 genotypes on venlafaxine pharmacokinetics in a Japanese population. Eur J Clin Pharmacol 56:175–180

    Article  CAS  PubMed  Google Scholar 

  • Geber C, Ostad Haji E, Schlicht K, Hiemke C, Tadic A (2013) Severe tremor after cotrimoxazole-induced elevation of venlafaxine serum concentrations in a patient with major depressive disorder. Ther Drug Monit 35:279–282. doi:10.1097/FTD.0b013e31828816e0

    Article  PubMed  Google Scholar 

  • Gonzalez FJ (1988) The molecular biology of cytochrome P450s. Pharmacol Rev 40:243–288

    CAS  PubMed  Google Scholar 

  • Grasmader K, Verwohlt PL, Rietschel M, Dragicevic A, Muller M, Hiemke C, Freymann N, Zobel A, Maier W, Rao ML (2004) Impact of polymorphisms of cytochrome-P450 isoenzymes 2C9, 2C19 and 2D6 on plasma concentrations and clinical effects of antidepressants in a naturalistic clinical setting. Eur J Clin Pharmacol 60:329–336. doi:10.1007/s00228-004-0766-8

    PubMed  Google Scholar 

  • Grözinger M, Dragicevic A, Hiemke C, Shams M, Muller MJ, Härtter S (2003) Melperone is an inhibitor of the CYP2D6 catalyzed O-demethylation of venlafaxine. Pharmacopsychiatry 36:3–6. doi:10.1055/s-2003-38084

    Article  PubMed  Google Scholar 

  • Guengerich FP (1996) In vitro techniques for studying drug metabolism. J Pharmacokinet Biopharm 24:521–533

    Article  CAS  PubMed  Google Scholar 

  • Hefner G, Geschke K, Hiemke C (2014) Severe adverse drug events under combination of nortriptyline and melperone due to pharmacokinetic interaction. J Clin Psychopharmacol 34:394–396. doi:10.1097/jcp.0000000000000127

    Article  PubMed  Google Scholar 

  • Hiemke C, Shams M (2013) Phenotyping and genotyping of drug metabolism to guide pharmacotherapy in psychiatry. Curr Drug Deliv 10:46–53

    Article  CAS  PubMed  Google Scholar 

  • Hiemke C, Baumann P, Bergemann N, Conca A, Dietmaier O, Egberts K, Fric M, Gerlach M, Greiner C, Grunder G, Haen E, Havemann-Reinecke U, Jaquenoud Sirot E, Kirchherr H, Laux G, Lutz UC, Messer T, Muller MJ, Pfuhlmann B, Rambeck B, Riederer P, Schoppek B, Stingl J, Uhr M, Ulrich S, Waschgler R, Zernig G (2011) AGNP consensus guidelines for therapeutic drug monitoring in psychiatry: update 2011. Pharmacopsychiatry 44:195–235

    Article  Google Scholar 

  • Huang SM, Strong JM, Zhang L, Reynolds KS, Nallani S, Temple R, Abraham S, Habet SA, Baweja RK, Burckart GJ, Chung S, Colangelo P, Frucht D, Green MD, Hepp P, Karnaukhova E, Ko HS, Lee JI, Marroum PJ, Norden JM, Qiu W, Rahman A, Sobel S, Stifano T, Thummel K, Wei XX, Yasuda S, Zheng JH, Zhao H, Lesko LJ (2008) New era in drug interaction evaluation: US Food and Drug Administration update on CYP enzymes, transporters, and the guidance process. J Clin Pharmacol 48:662–670. doi:10.1177/0091270007312153

    Article  CAS  PubMed  Google Scholar 

  • Kallio J, Huupponen R, Seppala M, Sako E, Iisalo E (1990) The effects of beta-adrenoceptor antagonists and levomepromazine on the metabolic ratio of debrisoquine. Br J Clin Pharmacol 30:638–643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Köhler D, Härtter S, Fuchs K, Sieghart W, Hiemke C (1997) CYP2D6 genotype and phenotyping by determination of dextromethorphan and metabolites in serum of healthy controls and of patients under psychotropic medication. Pharmacogenetics 7:453–461

    Article  PubMed  Google Scholar 

  • Köhnke MD, Lutz U, Wiatr G, Schwarzler F, Weller B, Schott K, Buchkremer G (2006) Cytochrome P450 2D6 dependent metabolization of risperidone is inhibited by melperone. Eur J Clin Pharmacol 62:333–334. doi:10.1007/s00228-006-0098-y

    Article  PubMed  Google Scholar 

  • Kretzschmar R, Otto J, Teschendorf HJ, Worstmann W (1976) Pharmacological investigations of 4′-fluoro-4-(4-methyl-peperidono)-butyrophenone with respect to its sedative and sleep-inducing properties (author’s transl). Arzneimittelforschung 26:1073–1076

    CAS  PubMed  Google Scholar 

  • Lennard MS, Silas JH, Freestone S, Ramsay LE, Tucker GT, Woods HF (1982) Oxidation phenotype–a major determinant of metoprolol metabolism and response. N Engl J Med 307:1558–1560. doi:10.1056/nejm198212163072505

    Article  CAS  PubMed  Google Scholar 

  • Lewis DF, Eddershaw PJ, Goldfarb PS, Tarbit MH (1997) Molecular modelling of cytochrome P4502D6 (CYP2D6) based on an alignment with CYP102: structural studies on specific CYP2D6 substrate metabolism. Xenobiotica 27:319–339. doi:10.1080/004982597240497

    Article  CAS  PubMed  Google Scholar 

  • Lobello KW, Preskorn SH, Guico-Pabia CJ, Jiang Q, Paul J, Nichols AI, Patroneva A, Ninan PT (2010) Cytochrome P450 2D6 phenotype predicts antidepressant efficacy of venlafaxine: a secondary analysis of 4 studies in major depressive disorder. J Clin Psychiatry 71:1482–1487. doi:10.4088/JCP.08m04773blu

    Article  CAS  PubMed  Google Scholar 

  • McAlpine DE, Biernacka JM, Mrazek DA, O’Kane DJ, Stevens SR, Langman LJ, Courson VL, Bhagia J, Moyer TP (2011) Effect of cytochrome P450 enzyme polymorphisms on pharmacokinetics of venlafaxine. Ther Drug Monit 33:14–20. doi:10.1097/FTD.0b013e3181fcf94d

    Article  CAS  PubMed  Google Scholar 

  • Michalets EL (1998) Update: clinically significant cytochrome P-450 drug interactions. Pharmacotherapy 18:84–112

    CAS  PubMed  Google Scholar 

  • Nagler EV, Webster AC, Vanholder R, Zoccali C (2012) Antidepressants for depression in stage 3-5 chronic kidney disease: a systematic review of pharmacokinetics, efficacy and safety with recommendations by European Renal Best Practice (ERBP). Nephrol Dial Transplant 27:3736–3745. doi:10.1093/ndt/gfs295

    Article  CAS  PubMed  Google Scholar 

  • Otton SV, Inaba T, Kalow W (1983) Inhibition of sparteine oxidation in human liver by tricyclic antidepressants and other drugs. Life Sci 32:795–800

    Article  CAS  PubMed  Google Scholar 

  • Otton SV, Inaba T, Kalow W (1984) Competitive inhibition of sparteine oxidation in human liver by beta-adrenoceptor antagonists and other cardiovascular drugs. Life Sci 34:73–80

    Article  CAS  PubMed  Google Scholar 

  • Perrild H, Kayser L, Poulsen HE, Skovsted L, Jr B, Hansen JM (1989) Differential effect of continuous administration of beta-adrenoceptor antagonists on antipyrine and phenytoin clearance. Br J Clin Pharmacol 28:551–554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Polasek TM, Lin FP, Miners JO, Doogue MP (2011) Perpetrators of pharmacokinetic drug–drug interactions arising from altered cytochrome P450 activity: a criteria-based assessment. Br J Clin Pharmacol 71:727–736. doi:10.1111/j.1365-2125.2011.03903.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Preskorn SH (2010) Understanding outliers on the usual dose–response curve: venlafaxine as a way to phenotype patients in terms of their CYP 2D6 status and why it matters. J Psychiatr Pract 16:46–49. doi:10.1097/01.pra.0000367777.96012.83

    Article  PubMed  Google Scholar 

  • Reis M, Lundmark J, Bjork H, Bengtsson F (2002) Therapeutic drug monitoring of racemic venlafaxine and its main metabolites in an everyday clinical setting. Ther Drug Monit 24:545–553

    Article  CAS  PubMed  Google Scholar 

  • Salive ME (2013) Multimorbidity in older adults. Epidemiol Rev. doi:10.1093/epirev/mxs009

    PubMed  Google Scholar 

  • Schmitt G, Herbold M, Peters F (2003) Methodenvalidierung im forensisch-toxikologischen Labor. Auswertung von Validierungsdaten nach den Richtlinien der GTFCh mit Valistat. Arvecon, Walldorf

  • Shams ME, Arneth B, Hiemke C, Dragicevic A, Muller MJ, Kaiser R, Lackner K, Härtter S (2006) CYP2D6 polymorphism and clinical effect of the antidepressant venlafaxine. J Clin Pharm Ther 31:493–502. doi:10.1111/j.1365-2710.2006.00763.x

    Article  CAS  PubMed  Google Scholar 

  • Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP (1994) Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 270:414–423

    CAS  PubMed  Google Scholar 

  • Sigurdsson HP, Hefner G, Ben-Omar N, Kostlbacher A, Wenzel-Seifert K, Hiemke C, Haen E (2014) Steady-state serum concentrations of venlafaxine in patients with late-life depression. Impact of age, sex and BMI. J Neural Transm. doi:10.1007/s00702-014-1317-9

    PubMed  Google Scholar 

  • Slaughter RL, Edwards DJ (1995) Recent advances: the cytochrome P450 enzymes. Ann Pharmacother 29:619–624

    CAS  PubMed  Google Scholar 

  • Turnheim K (2003) When drug therapy gets old: pharmacokinetics and pharmacodynamics in the elderly. Exp Gerontol 38:843–853. doi:10.1016/s0531-5565(03)00133-5

    Article  CAS  PubMed  Google Scholar 

  • Unterecker S, Hiemke C, Greiner C, Haen E, Jabs B, Deckert J, Pfuhlmann B (2012) The effect of age, sex, smoking and co-medication on serum levels of venlafaxine and O-desmethylvenlafaxine under naturalistic conditions. Pharmacopsychiatry 45:229–235. doi:10.1055/s-0031-1301366

    Article  CAS  PubMed  Google Scholar 

  • U.S. Food and Drug Administration (2014) Drug development and drug interactions: table of substrates, inhibitors and inducers. http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm093664.htm Accessed 19 Aug 2014

  • van der Weide J, van Baalen-Benedek EH, Kootstra-Ros JE (2005) Metabolic ratios of psychotropics as indication of cytochrome P450 2D6/2C19 genotype. Ther Drug Monit 27:478–483

    Article  PubMed  Google Scholar 

  • Vestal RE (1997) Aging and pharmacology. Cancer 80:1302–1310

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Christoph Hiemke has received speaker’s or consultancy fees from the following pharmaceutical companies: Astra Zeneca, Janssen-Cilag, Pfizer, Lilly and Servier. He is managing director of the psiac GmbH which provides an internet based drug–drug interaction program for psychopharmacotherapy. He reports no conflict of interest with this publication. Gudrun Hefner has received speaker’s fee from Servier. She reports no conflict of interest with this publication. All other authors declare no conflicts of interest as well. The research study did not receive funds or support from any source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gudrun Hefner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hefner, G., Unterecker, S., Shams, M.E.E. et al. Melperone but not bisoprolol or metoprolol is a clinically relevant inhibitor of CYP2D6: evidence from a therapeutic drug monitoring survey. J Neural Transm 122, 1609–1617 (2015). https://doi.org/10.1007/s00702-015-1403-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-015-1403-7

Keywords

Navigation