Skip to main content

Advertisement

Log in

On the dynamics of a case study of explosive cyclogenesis in the Mediterranean

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

In this study, a case of explosive cyclogenesis over the central Mediterranean is examined with the aid of the MS Cyclone Detection and Tracking Scheme along with the Vertical Tracing Software and the Parcel Trajectory Software that were developed in Melbourne University, employing a regular 0.5° × 0.5° latitude–longitude grid of the ERA-Interim dataset. It is found that the explosive cyclogenesis occurred as a result of the downward intrusion of high-PV cold stratospheric air into the upper troposphere combined with a low-level warm environment surrounded by the bent-back structure of the cold front in the poleward side of a jet streak. The positive effect of the diabatic processes in explosive cyclogenesis is demonstrated. When cold air masses cross the warmer sea of the central Mediterranean, positive surface sensible and latent heat fluxes generate a low-level warm and moist environment, favorable for convective activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Bader MJ, Forbes GS, Grant JR, Liley RB, Waters AJ (1995) Images in weather forecasting. A practical guide for interpreting satellite and radar imagery. Cambridge University Press, Cambridge

    Google Scholar 

  • Barras V, Simmonds I (2009) Observation and modelling of stable water isotopes as diagnostics of rainfall dynamics over southeastern Australia. J Geophys Res 114:D23308. doi:10.1029/2009JD012132

    Article  Google Scholar 

  • Barry RG, Carleton AM (2001) Synoptic and dynamic climatology. Routledge, London

    Google Scholar 

  • Capaldo M, Conte M, Finizio C, Todisco G (1980) A detailed analysis of a severe storm in the central Mediterranean: the case of the Trapani flood. Riv Meteorol Aeronaut 40:183–199

    Google Scholar 

  • Carlson TN (1980) Airflow through midlatitude cyclones and the comma cloud pattern. Mon Weather Rev 108:1498–1509. doi:10.1175/1520-0493(1980)108<1498:ATMCAT>2.0.CO;2

    Article  Google Scholar 

  • Conte M, Piervitali E, Colacino M (1997) The meteorological bomb in the Mediterranean. INM/WMO International symposium on cyclones and hazardous weather in the Mediterranean MMA/UIB: 283–287

  • Danielsen EF (1974) The relationship between severe weather, major dust storms and rapid cyclogenesis. Parts I and II. Subsynoptic Extratropical Weather Systems: Observations, Analysis, Modeling, and Prediction’, pp 215–241 in Notes From a Colloquium: Summer 1974, Vol. II., National Center for Atmospheric Research, Boulder

  • Davis CA, Emmanuel KA (1988) Observational evidence for the influence of surface heat fluxes on rapid maritime cyclogenesis. Mon Weather Rev 116:2649–2659

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 115:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Fita LJ, Romero R, Ramis C (2006) Intercomparison of intense cyclogenesis events over the Mediterranean basin based on baroclinic and diabatic influences. Adv Geosci 7:333–342

    Article  Google Scholar 

  • Flocas HA, Simmonds I, Kouroutzoglou J, Kevin K, Hatzaki M, Bricolas V, Asimakopoulos D (2010) On cyclonic tracks over the eastern Mediterranean. J Clim 23:5243–5257. doi:10.1175/2010Jcli3426.1

    Article  Google Scholar 

  • Georgiev CG (1999) Quantitative relationship between Meteosat WV data and positive potential vorticity anomalies: a case study over the Mediterranean. Meteorol Appl 6:97–109. doi:10.1017/S1350482799001024

    Article  Google Scholar 

  • Gyakum JR, Danielson RE (2000) Analysis of meteorological precursors to ordinary and explosive cyclogenesis in the Western North Pacific. Mon Weather Rev 128:851–863. doi:10.1175/1520-0493(2000)128<0851:AOMPTO>2.0.CO;2

    Article  Google Scholar 

  • Harrold TW (1973) Mechanisms influencing the distribution of precipitation within baroclinic disturbances. Q J R Meteorol Soc 99:232–251. doi:10.1002/qj.49709942003

    Article  Google Scholar 

  • Holton JR (1992) An introduction to dynamic meteorology, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Homar V, Ramis C, Alonso S (2002) A deep cyclone of African origin over the Western Mediterranean: diagnosis and numerical simulation. Ann Geophys 20:93–106. doi:10.5194/angeo-20-93-2002

    Article  Google Scholar 

  • Homar V, Jansà A, Campins J, Genoves A, Ramis C (2007) Towards a systematic climatology of sensitivities of Mediterranean high impact weather: a contribution based on intense cyclones. Nat Hazards Earth Syst Sci 7:445–454. doi:10.5194/nhess-7-445-2007

    Article  Google Scholar 

  • Horvath K, Ivančan-Picek B (2009) A numerical analysis of a deep Mediterranean lee cyclone: sensitivity to mesoscale potential vorticity anomalies. Meteorol Atmos Phys 103:161–171. doi:10.1007/s00703-008-0324-5

    Article  Google Scholar 

  • Horvath K, Fita I, Romero R, Ivancan-Picek B, Stiperski I (2006) Cyclogenesis in the lee of the Atlas Mountains: a factor separation numerical study. Adv Geosci 7:327–331 Sref-ID:1680-7359/adgeo/2006-7-327

    Article  Google Scholar 

  • Hoskins BJ, McIntyre ME, Robertson AW (1985) On the use and significance of isentropic potential vorticity maps. Q J R Meteorol Soc 111:877–946. doi:10.1002/qj.49711147002

    Article  Google Scholar 

  • Iribarne JV, Godson WL (1973) Atmospheric thermodynamics. Geophysics and astrophysics monographs, 2nd edn. Springer, Boston

    Book  Google Scholar 

  • Jager G (1984) Satellite indicators of rapid cyclogenesis. Mar Weather Log 28:1–6

    Google Scholar 

  • Karacostas TS, Flocas AA (1983) The development of the “bomb” over the Mediterranean area. La Meteorologie, Actes de la conference “eau verte” 34:351–358

  • Keyser DA, Johnson DR (1984) Effects of diabatic heating on the ageostrophic circulation of an upper tropospheric jet streak. Mon Weather Rev 112:1709–1724

    Article  Google Scholar 

  • Keyser DA, Shapiro MA (1986) A review of the structure and dynamics of upper-level frontal zones. Mon Weather Rev 114:452–499. doi:10.1175/1520-0493(1986)114<0452:AROTSA>2.0.CO;2

    Article  Google Scholar 

  • Kouroutzoglou J, Flocas HA, Hatzaki M, Keay K, Simmonds I, Mavroudis A (2013b) Identification of the development mechanisms of an explosive cyclone in Central Mediterranean with the aid of the MSG satellite images. Proc SPIE 8795, First International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2013), 87951S. doi: 10.1117/12.2027584

  • Kouroutzoglou J, Flocas HA, Simmonds I, Keay K, Hatzaki M (2011a) Climatological aspects of explosive cyclones in the Mediterranean. Int J Climatol 31:1785–1802. doi:10.1002/joc.2203

    Article  Google Scholar 

  • Kouroutzoglou J, Flocas HA, Simmonds I, Keay K, Hatzaki M (2011b) Assessing characteristics of Mediterranean explosive cyclones for different data resolution. Theor Appl Climatol 105:263–275. doi:10.1007/s00704-010-0390-8

    Article  Google Scholar 

  • Kouroutzoglou J, Flocas HA, Keay K, Simmonds I, Hatzaki M (2012a) On the vertical structure of Mediterranean explosive cyclones. Theor Appl Climatol 110:155–176. doi:10.1007/s00704-012-0620-3

    Article  Google Scholar 

  • Kouroutzoglou J, Flocas HA, Hatzaki M, Keay K, Simmonds I (2012b) On the dynamics of Mediterranean explosive cyclogenesis. 11th International Conference on Meteorology, Climatology and Atmospheric Physics, COMECAP2012, Athens, Greece, 29 May-1 June 2012. In: Helmis CG, Nastos PT (eds), Advances in Meteorology, Climatology and Atmospheric Physics, Springer Atmospheric Science, pp 563–570. doi: 10.1007/978-3-642-29172-2_80, Springer, Berlin

  • Kouroutzoglou J, Flocas HA, Keay K, Simmonds I, Hatzaki M (2013a) A high-resolution climatological study on the comparison between surface explosive and ordinary cyclones in the Mediterranean. Reg Environ Chang. doi:10.1007/s10113-013-0461-3

    Google Scholar 

  • Kouroutzoglou J, Flocas HA, Hatzaki M, Giannikopoyloy I, Keay K, Simmonds I (2014) Assessing the influence of diabatic forcing and its interaction with the baroclinic processes on Mediterranean explosive cyclones. In: Kanakidou M, Mihalopoulos N, Nastos P (eds) COMECAP 2014 e-book of proceedings, vol 2. Crete University Press, Heraklion, pp 71–75

  • Kucharski F, Thorpe AJ (2000) Upper-level barotropic growth as a precursor to cyclogenesis during FASTEX. Q J R Meteorol Soc 126:3219–3232. doi:10.1002/qj.49712657011

    Article  Google Scholar 

  • Kuo YH, Reed RJ (1988) Numerical simulation of an explosively deepening cyclones in the Eastern Pacific. Mon Weather Rev 116:2081–2105. doi:10.1175/1520-0493(1988)116<2081:NSOAED>2.0.CO;2

    Article  Google Scholar 

  • Kurz M (1998) Synoptic meteorology. Training guidelines of the German Meteorological Service. 2nd edn. Offenbach

  • Lagouvardos K, Kotroni V, Defer E (2006) Synoptic environment related to rapid cyclogenesis in the Eastern Mediterranean. Adv Geosci 7:115–119. doi:10.5194/adgeo-7-115-2006

    Article  Google Scholar 

  • Law RM (1993) Modelling the global transport of atmospheric constituents. Dissertation, University of Melbourne, Melbourne

  • Lim EP, Simmonds I (2002) Explosive cyclone development in the Southern Hemisphere and a comparison with Northern Hemisphere events. Mon Weather Rev 130:2188–2209. doi:10.1175/1520-0493

    Article  Google Scholar 

  • Lim EP, Simmonds I (2007) Southern hemisphere winter extratropical cyclone characteristics and vertical organization observed with the ERA-40 data in 1979-2001. J Clim 20:2675–2690. doi:10.1175/JCLI4135.1

    Article  Google Scholar 

  • Lionello P, Bhend J, Buzzi A, Della-Marta PM, Krichak SO, Jánsá A, Maheras P, Sanna A, Trigo IF, Trigo R (2006) Cyclones in the Mediterranean region: climatology and effects on the environment. Dev Earth Environ Sci 4:325–372

    Google Scholar 

  • Lolis CJ, Bartzokas A, Katsoulis BD (2004) Relation between sensible and latent heat fluxes in the Mediterranean and precipitation in the Greek area during winter. Int J Climatol 24:1803–1816. doi:10.1002/joc.1112

    Article  Google Scholar 

  • Michaelides SC (1992) A spatial and temporal energetics analysis of a baroclinic disturbance in the Mediterranean. Mon Weather Rev 120:1224–1243

    Article  Google Scholar 

  • Michaelides SC, Prezerakos NG, Flocas HA (1999) Quasi-Lagrangian energetics of an intense Mediterranean cyclone. Q J R Meteorol Soc 125:139–168. doi:10.1002/qj.49712555309

    Article  Google Scholar 

  • Murray RJ, Simmonds I (1991a) A numerical scheme for tracking cyclone centers from digital data. Part I: development and operation of the scheme. Aust Meteorol Mag 39:155–166

    Google Scholar 

  • Murray RJ, Simmonds I (1991b) A numerical scheme for tracking cyclone centres from digital data. Part II: application to January and July general circulation model simulations. Aust Meteorol Mag 39:167–180

    Google Scholar 

  • Musk LF (1988) Weather systems. Cambridge topics in geography. Cambridge University Press, Cambridge

    Google Scholar 

  • Nielsen NW, Sass BH (2003) A numerical, high resolution study of the life cycle of the severe storm over Denmark on 3 December 1999. Tellus 55A:338–351. doi:10.1034/j.1600-0870.2003.00022.x

    Article  Google Scholar 

  • Pálmen E, Newton CW (1969) Atmospheric circulation systems. Their structure and physical interpretation. Academic Press, New York

    Google Scholar 

  • Papadopoulos VP, Kontoyiannis H, Ruiz S, Zarokanellos N (2012) Influence of atmospheric circulation on turbulent air-sea heat fluxes over the Mediterranean Sea during winter. J Geophys Res 117 (C03044). doi: 10.1029/2011JC007455

  • Pastor F, Estrela MJ, Peñarrocha D, Millán MM (2001) Torrential rains on the Spanish Mediterranean coast: Modeling the effects of the sea surface temperature. J Appl Meteorol 40:1180–1195. doi:10.1175/1520-0450(2001)040<1180:TROTSM>2.0.CO;2

    Article  Google Scholar 

  • Perrin G, Simmonds I (1995) The origins and characteristics of cold air outbreaks over Melbourne. Aus Meteorol Mag 44:41–59

    Google Scholar 

  • Prezerakos (1985) The northwest African depressions affecting the south Balkans. J Climatol 5:643–654. doi:10.1002/joc.3370050606

    Article  Google Scholar 

  • Prezerakos NG, Flocas HA (1996) The formation of a dynamically unstable ridge at 500 hPa as a precursor of surface cyclogenesis in the central Mediterranean. Meteorol Appl 3:101–111. doi:10.1002/met.5060030201

    Article  Google Scholar 

  • Prezerakos NG, Flocas HA (1997) The role of a developing upper diffluent trough in surface cyclogenesis over central Mediterranean. Meteorol Zeitschrift 6:108–119

    Google Scholar 

  • Prezerakos NG, Michaelides SC (1989) A composite diagnosis in sigma coordinates of the atmospheric energy balance during intense cyclonic activity. Q J R Meteorol Soc 115:463–486. doi:10.1002/qj.49711548703

    Article  Google Scholar 

  • Prezerakos NG, Flocas HA, Michaelides SC (1999) Upper tropospheric downstream development leading to surface cyclogenesis in the central Mediterranean. Meteorol Appl 6:1–10. doi:10.1017/S1350482799001218

    Article  Google Scholar 

  • Reed RJ, Albright MD, Simmons AJ, Undén P (1988) The role of latent heat release in explosive cyclogenesis: three examples based on ecmwf operational forecasts. Wea Forecasting 3:217–229. doi:10.1175/1520-0434(1988)003<0217:TROLHR>2.0.CO;2

    Article  Google Scholar 

  • Rogers E, Bosart LF (1986) An investigation of explosively deepening oceanic cyclones. Mon Weather Rev 114:702–718. doi:10.1175/1520-0493(1986)114<0702:AIOEDO>2.0.CO;2

    Article  Google Scholar 

  • Sanders F, Gyakum JR (1980) Synoptic-dynamic climatology of the “bomb”. Mon Weather Rev 108:1589–1606. doi:10.1175/1520-0493

    Article  Google Scholar 

  • Schultz DM, Sanders F (2002) Upper-level frontogenesis associated with the birth of mobile troughs in northwesterly flow. Mon Weather Rev 130:2593–2610. doi:10.1175/1520-0493(2002)130<2593:ULFAWT>2.0.CO;2

    Article  Google Scholar 

  • Schultz DM, Vaughan G (2011) Occluded fronts and the occlusion process: A fresh look at conventional wisdom. Bull Am Meteorol Soc 92:443–466. doi:10.1175/2010BAMS3057.1

    Article  Google Scholar 

  • Semple AT (1998) Conceptual models of cyclogenesis. Joint Centre for Mesoscale Meteorology (JCMM) Internal Report No 92

  • Semple AT (2003) A review and unification of conceptual models of cyclogenesis. Meteorol Appl 10:39–59. doi:10.1017/S135048270300505X

    Article  Google Scholar 

  • Shapiro MA, Keyser D (1990) Fronts, jet streams and the extratropical cyclones. In: Newton CW, Holopainen EO (eds), The Erik Palmén memorial volume. Am Meteorol Soc, pp 167–191

  • Shay-El Y, Alpert P (1991) A diagnostic study of winter diabatic heating in the Mediterranean in relation to cyclones. Q J R Meteorol Soc 117:715–747. doi:10.1256/smsqj.50003

    Article  Google Scholar 

  • Simmonds I, Murray RJ (1999) Southern extratropical cyclone behavior in ECMWF analyses during the FROST special observing periods. Weather Forecast 14:878–891. doi:10.1175/1520-0434

    Article  Google Scholar 

  • Simmonds I, Murray RJ, Leighton RM (1999) A refinement of cyclone tracking methods with data from FROST. Aust Meteorol Mag (Spec Ed):35–49

  • Smith PJ, Tsou CH (1988) Static stability variations during the development of an intense extratropical cyclone. Mon Weather Rev 116:1245–1250

    Article  Google Scholar 

  • Thorncroft CD, Flocas HA (1997) A case study of Saharan cyclogenesis. Mon Weather Rev 125:1147–1165. doi:10.1175/1520-493(1997)125<1147:ACSOSC>2.0.CO;2

    Article  Google Scholar 

  • Uccellini LW, Keyser D, Brill KF, Wash CH (1985) The Presidents’ Day cyclone of 18-19 February 1979: influence of upstream trough amplification and associated tropopause folding on rapid cyclogenesis. Mon Weather Rev 113:962–988

    Article  Google Scholar 

  • Weldon RB (1986) Synoptic Scale Cloud Systems. In Parke PS (ed), Satellite Imagery Interpretation for Forecasters, Temple Hills, Md., National Weather Association. Meteorological Monographs 2–86, 1, pp 2.A 1–35

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Flocas.

Additional information

Responsible Editor: J.-F. Miao.

Appendix

Appendix

See Table 1.

Table 1 Parameters of the vertical tracking scheme specified for each isobaric level

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kouroutzoglou, J., Flocas, H.A., Hatzaki, M. et al. On the dynamics of a case study of explosive cyclogenesis in the Mediterranean. Meteorol Atmos Phys 127, 49–73 (2015). https://doi.org/10.1007/s00703-014-0357-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-014-0357-x

Keywords

Navigation