Skip to main content
Log in

Assessing characteristics of Mediterranean explosive cyclones for different data resolution

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

A comparison of two objective climatologies of explosive cyclones in the Mediterranean region is performed. The results are derived from two different mean sea-level pressure reanalysis data resolutions, but from the same assimilation model, in order to quantify the pure impact of higher resolution on the identification and characteristics of explosive cyclones, when the assimilation model is the same. The explosive cyclones were identified with the aid of the Melbourne University automatic cyclone finding and tracking scheme over a 40-year period, using the 6-hourly analyses of ERA-40 mean sea-level pressure (MSLP) on: (a) 2.5 × 2.5 and (b) 1 × 1 latitude–longitude grid. The comparison of the two datasets revealed the significant role of the increase in spatial resolution of MSLP data on the identification and tracking process, and the number of the explosive cyclones in the high-resolution dataset is almost four times greater than the respective one in the lower resolution dataset. However, the comparison of explosive cyclone characteristics, including spatial and temporal variations of explosive deepening, revealed differences in the geographical distribution of the location of the maximum explosive deepening and average explosive cyclone Laplacian of the central pressure. These differences are due to the identification in the higher resolution set of smaller scale and secondary explosives along the strongly baroclinic northern Mediterranean boundaries, south of the Alps and the Pyrenees. Explosive deepening appears a bias to the daytime period from 12 to 18 Coordinated Universal Time (UTC) for both datasets, which is more prominent in the LR dataset. Statistically significant difference of pressure tendency between the two datasets appear for the daytime period from 06 to 12 UTC, accounting for better representation of orographic forcing in the HR dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alpert P, Neeman BU, Shay-El Y (1999) Climatological analysis of Mediterranean cyclones using ECMWF data. Tellus 42A:65–77

    Google Scholar 

  • Blender R, Schubert M (2000) Cyclone Tracking in Different Spatial and Temporal Resolutions. Mon Wea Rev 128:377–384. doi:10.1175/1520-0493

    Article  Google Scholar 

  • Brzovic N, Jurcec V (1997) Numerical simulation of the Adriatic cyclone development. Geofizika 14:29–45

    Google Scholar 

  • Conte M (1986) The meteorological “bomb” in the Mediterranean: a synoptic climatology. Riv Meteorologia Aeronaut 46:121–130, ISSN 0035-6328

    Google Scholar 

  • Conte M, Piervitali E, Colacino M (1997) The meteorological bomb in the Mediterranean. INM/WMO International symposium on cyclones and hazardous weather in the Mediterranean MMA/UIB. pp. 283–287

  • Courtier P et al (1998) The ECMWF implementation of three dimensional variational assimilation 3D-Var. Part I: formulation. Q J R Meteorol Soc 124:1783–1808

    Google Scholar 

  • Flocas HA, Simmonds I, Kouroutzoglou J, Keay K, Hatzaki M (2010) On cyclonic tracks over the Eastern Mediterranean. J Climate 23:5243–5257

    Article  Google Scholar 

  • Froude LSR (2010) TIGGE: comparison of the prediction of Northern hemisphere extratropical cyclones by different ensemble prediction systems. Wea Forecasting 25:819–836. doi:10.1175/2010WAF2222326.1

    Article  Google Scholar 

  • Gil VE, Genovés A, Picornell MA, Jansà A (2003) Automated database of cyclones from the ECMWF model: preliminary comparison between west and east Mediterranean basins. In: Proceedings of the 4th EGS Plinius Conference held at Mallorca, Spain

  • Grisogono B, Belušić D (2009) A review of recent advances in understanding the mesoscale and microscale properties if the severe Bora wind. Tellus 61A:1–16. doi:10.1111/j.1600-0870.2008.00369.x

    Google Scholar 

  • Haak U, Ulbrich U (1996) Verification of objective cyclone climatology for the North Atlantic. Meteorol Z 5:24–30

    Google Scholar 

  • Hanson CE, Palutikof JP, Davies TD (2004) Objective cyclone climatologies of the North Atlantic—a comparison between the ECMWF and NCEP Reanalyses. Clim Dyn 22:757–769. doi:10.1007/s00382-004-0415-z

    Article  Google Scholar 

  • Homar V, Jansà A, Campins J, Genovés A, Ramis C (2007) Towards a systematic climatology of sensitivities of Mediterranean high impact weather: a contribution based on intense cyclones. Nat Hazards Earth Syst Sci 7:445–454. doi:10.5194/nhess-7-445-2007

    Google Scholar 

  • Jung T, Gulev SK, Rudeva I, Soloviov V (2006) Sensitivity of extratropical cyclone characteristics to horizontal resolution in the ECMWF model. Q J R Meteorol Soc 132:1839–1857. doi:10.1256/qj.05.212

    Article  Google Scholar 

  • Kouroutzoglou J, Flocas HA, Keay K, Simmonds I, Hatzaki M (2010) Climatological aspects of explosive cyclones in the Mediterranean. Int J Climatol. doi:10.1002/joc.2203

    Google Scholar 

  • Kuo YH, Reed RJ (1988) Numerical simulation of an explosive deepening cyclone in the Eastern Pacific. Mon Wea Rev 116:2081–2105. doi:10.1175/1520-0493

    Article  Google Scholar 

  • Lambert SJ, Fyfe JC (2006) Changes in winter cyclone frequencies and strengths simulated in enhanced greenhouse warming experiments: results from the models participating in the IPCC diagnostic exercise. Clim Dyn 26:713–728

    Article  Google Scholar 

  • Le Treut H, Kalnay E (1990) Comparison of observed and simulated cyclone frequency distribution in the Australian region: averages for January, April, July and October. Aust Met Mag 39:57–71

    Google Scholar 

  • Lim EP, Simmonds I (2002) Explosive cyclone development in the Southern Hemisphere and a comparison with Northern Hemisphere events. Mon Wea Rev 130:2188–2209. doi:10.1175/1520-0493

    Article  Google Scholar 

  • Lim EP, Simmonds I (2007) Southern hemisphere winter extratropical cyclone characteristics and vertical organization observed with the ERA-40 data in 1979–2001. J Climate 20:2675–2690. doi:10.1175/JCLI4135.1

    Article  Google Scholar 

  • Lionello P et al (2006) Cyclones in the Mediterranean Region: climatology and effects on the environment. Dev Earth Environ Sci 4:325–372. doi:10.1016/S1571-9197(06)80009

    Article  Google Scholar 

  • Maheras P, Flocas HA, Patrikas I, Anagnostopoulou C (2001) A 40 year objective climatology of surface cyclones in the Mediterranean region: spatial and temporal distribution. Int J Climatol 21:109–130. doi:10.1002/joc.599

    Article  Google Scholar 

  • Mesinger F, Strickler RF (1982) Effects of mountains on genoa cyclogeneses. J Meteorol Soc Jpn 60:326–337

    Google Scholar 

  • Mesinger F, Janjic Z, Ninckovic S, Gavrilov D, Deaven DG (1989) The step-mountain coordinate: model description and performance for cases of Alpine Lee cyclogenesis and for a case of an Appalachian redevelopment. Mon Wea Rev 116:1493–1518. doi:10.1175/1520-0493(1988)116<1493:TSMCMD>2.0.CO;2

    Article  Google Scholar 

  • Mesquita MdS, Atkinson DE, Simmonds I, Keay K, Gottschalck J (2009) New perspectives on the synoptic development of the severe October 1992 Nome storm. Geophys Res Lett 36:L13808. doi:10.1029/2009GL038824

    Article  Google Scholar 

  • Murray RJ, Simmonds I (1991a) A numerical scheme for tracking cyclone centres from digital data. Part I: development and operation of the scheme. Aust Met Mag 39:155–166

    Google Scholar 

  • Murray RJ, Simmonds I (1991b) A numerical scheme for tracking cyclone centres from digital data. Part II: application to January and July general circulation model simulations. Aust Met Mag 39:167–180

    Google Scholar 

  • Pasarić Z, Belušić D, Chiggiato J (2009) Orographic effects on meteorological fields over the Adriatic from different models. J Mar Syst 78:S90–S100

    Article  Google Scholar 

  • Petterssen S (1956) Weather analysis and forecasting, vol. 1, 2nd edn. McGraw-Hill, New York, p 269

    Google Scholar 

  • Picornell MA, Jansà A, Genovés A, Campins J (2001) Automated database of mesocyclones from the HIRLAM(INM)-0.5 analyses in the western Mediterranean. Int J Climatol 21:335–354. doi:10.1002/joc.621

    Article  Google Scholar 

  • Pinto JG, Spangehl T, Ulbrich U, Speth P (2005) Sensitivities of a cyclone detection and tracking algorithm: individual tracks and climatology. Meteorol Z 14:823–838

    Article  Google Scholar 

  • Prezerakos N (1985) The northwest African depressions affecting south Balkans. J Climatol 5:643–654. doi:10.1002/joc.3370050606

    Article  Google Scholar 

  • Pullen J, Doyle JD, Haack T, Dorman C, Signell RP, Lee CM (2007) Bora event variability and the role of air-sea feedback. J Geophys Res 112:C03S18, doi:10.1029/2006JC003726

  • Raible CC, Della-Marta PM, Schwierz C, Wernli H, Blender R (2008) Northern Hemisphere extratropical cyclones: a comparison of detection and tracking methods and different reanalyses. Mon Wea Rev 136:880–897. doi:10.1175/2007MWR2143.1

    Article  Google Scholar 

  • Sanders F, Gyakum JR (1980) Synoptic-dynamic climatology of the “bomb”. Mon Wea Rev 108:1589–1606. doi:10.1175/1520-0493

    Article  Google Scholar 

  • Schubert M (1996) Analyse der Zyklonenzugbahnen über dem Nordatlantik in Kontroll-und Szenarienrechnungen. M.S. thesis, Universität Hamburg. p. 121

  • Signell RP, Chiggiato J, Horstmann J, Doyle JD, Pullen J, Askari F (2010) High-resolution mapping of Bora winds in the northern Adriatic Sea using synthetic aperture radar. J Geophys Res 115:C04020. doi:10.1029/2009JC005524

    Article  Google Scholar 

  • Simmonds I, Keay K (2000) Mean Southern Hemisphere extratropical cyclone behavior in the 40-year NCEP-NCAR reanalysis. J Climate 13:873–885. doi:10.1175/1520-0442

    Article  Google Scholar 

  • Simmonds I, Keay K (2009) Extraordinary September Arctic sea ice reductions and their relationships with storm behavior over 1979–2008. Geophys Res Lett 39:L19715. doi:10.1029/2009GL039810

    Article  Google Scholar 

  • Simmonds I, Murray RJ (1999) Southern Extratropical Cyclone Behavior in ECMWF Analyses during the FROST Special Observing Periods. Weather forecasting 14:878–891. doi:10.1175/1520-0434

    Article  Google Scholar 

  • Simmonds I, Murray RJ, Leighton RM (1999) A refinement of cyclone tracking methods with data from FROST. Aust Met Mag Special Edition. pp. 35–49

  • Sinclair MR (1997) Objective identification of cyclones and their circulation intensity, and climatology. Weather Forecasting 12:595–612. doi:10.1175/1520-0434

    Article  Google Scholar 

  • Trigo IF (2006) Climatology and interannual variability of storm—tracks in the Euro—Atlantic sector: a comparison between ERA-40 and NCEP—NCAR reanalyses. Clim Dyn 26:127–143. doi:10.1007/s00382-005-0065-9

    Article  Google Scholar 

  • Trigo IF, Davies TD, Bigg GR (1999) Objective Climatology of Cyclones in the Mediterranean Region. J Climate 12:1685–1696. doi:10.1175/1520-0442

    Article  Google Scholar 

  • Ueno K (1993) Inter-annual variability of surface cyclone tracks, atmospheric circulation patterns and precipitation in winter. J Climatol 4:297–310

    Google Scholar 

  • Uppala SM et al (2005) The ERA-40 Re-analysis. Q J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  • Vecenaj Z, Belušić D, Grisogono B (2010) Characteristics of the near-surface turbulence during a bora event. Ann Geophys 28:155–163

    Article  Google Scholar 

  • Zolina O, Gulev SK (2002) Improving the accuracy of mapping cyclone numbers and frequencies. Mon Wea Rev 130:748–759. doi:10.1175/1520-0493

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena A. Flocas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kouroutzoglou, J., A. Flocas, H., Simmonds, I. et al. Assessing characteristics of Mediterranean explosive cyclones for different data resolution. Theor Appl Climatol 105, 263–275 (2011). https://doi.org/10.1007/s00704-010-0390-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-010-0390-8

Keywords

Navigation