Skip to main content
Log in

New insight into the structure of RNA in red clover necrotic mosaic virus and the role of divalent cations revealed by small-angle neutron scattering

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Red clover necrotic mosaic virus (RCNMV) is a 36-nm-diameter, T = 3 icosahedral plant virus with a genome that is split between two single-stranded RNA molecules of approximately 3.9 kb and 1.5 kb, as well as a 400-nucleotide degradation product. The structure of the virus capsid and its response to removing Ca2+ and Mg2+ was previously studied by cryo-electron microscopy (cryo-EM) (Sherman et al. J Virol 80:10395–10406, 2006) but the structure of the RNA was only partially resolved in that study. To better understand the organization of the RNA and conformational changes resulting from the removal of divalent cations, small-angle neutron scattering with contrast variation experiments were performed. The results expand upon the cryo-EM results by clearly showing that virtually all of the RNA is contained in a thin shell that is in contact with the interior domains of the viral capsid protein, and they provide new insight into changes in the RNA packing that result from removal of divalent cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Musil M, Gallo J (1982) Serotypes of red-clover necrotic mosaic-virus.1. Characterization of 3 serotypes. Acta Virol 26(6):497–501

    CAS  PubMed  Google Scholar 

  2. Loo L, Guenther RH, Lommel SA, Franzen S (2008) Infusion of dye molecules into red clover necrotic mosaic virus. Chem Commun 1:88–90. doi:10.1039/b714748a

    Article  Google Scholar 

  3. Gould AR, Francki RIB, Hatta T, Hollings M (1981) The bipartite genome of red-clover necrotic mosaic-virus. Virology 108(2):499–506. doi:10.1016/0042-6822(81)90457-8

    Article  CAS  PubMed  Google Scholar 

  4. Hiruki C (1987) The Dianthoviruses—a distinct group of isometric plant-viruses with bipartite genome. Adv Virus Res 33:257–300. doi:10.1016/s0065-3527(08)60320-6

    Article  CAS  PubMed  Google Scholar 

  5. Basnayake VR, Sit TL, Lommel SA (2006) The genomic RNA packaging scheme of red clover necrotic mosaic virus. Virology 345(2):532–539. doi:10.1016/j.virol.2005.10.017

    Article  CAS  PubMed  Google Scholar 

  6. Iwakawa HO, Mizumoto H, Nagano H, Imoto Y, Takigawa K, Sarawaneeyaruk S, Kaido M, Mise K, Okuno T (2008) A viral noncoding RNA generated by cis-element-mediated protection against 5′- > 3′ RNA decay represses both cap-independent and cap-dependent Translation. J Virol 82(20):10162–10174. doi:10.1128/jvi.01027-08

    Article  CAS  PubMed  Google Scholar 

  7. Harrison SC, Olson AJ, Schutt CE, Winkler FK, Bricogne G (1978) Tomato bushy stunt virus at 2.9-Å resolution. Nature 276(5686):368–373. doi:10.1038/276368a0

    Article  CAS  PubMed  Google Scholar 

  8. Olson AJ, Bricogne G, Harrison SC (1983) Structure of tomato bushy stunt virus.4. The virus particle at 2.9 Å resolution. J Mol Biol 171(1):61–93. doi:10.1016/s0022-2836(83)80314-3

    Article  CAS  PubMed  Google Scholar 

  9. Caspar DLD, Klug A (1962) Physical principles in construction of regular viruses. Cold Spring Harbor Symp Quant Biol 27:1–24

    Article  CAS  PubMed  Google Scholar 

  10. Sherman MB, Guenther RH, Tama F, Sit TL, Brooks CL, Mikhailov AM, Orlova EV, Baker TS, Lommel SA (2006) Removal of divalent cations induces structural transitions in red clover necrotic mosaic virus, revealing a potential mechanism for RNA release. J Virol 80(21):10395–10406. doi:10.1128/jvi.01137-06

    Article  CAS  PubMed  Google Scholar 

  11. Xiong Z, Lommel SA (1989) The complete nucleotide-sequence and genome organization of red-clover necrotic mosaic-virus rna-1. Virology 171(2):543–554. doi:10.1016/0042-6822(89)90624-7

    Article  CAS  PubMed  Google Scholar 

  12. Jacrot B (1976) Study of biological structures by neutron-scattering from solution. Rep Prog Phys 39(10):911–953. doi:10.1088/0034-4885/39/10/001

    Article  CAS  Google Scholar 

  13. Heller WT (2010) Small-angle neutron scattering and contrast variation: a powerful combination for studying biological structures. Acta Crystallogr Sect D-Biol Crystallogr 66:1213–1217. doi:10.1107/s0907444910017658

    Article  CAS  Google Scholar 

  14. Jacrot B, Pfeiffer P, Witz J (1976) Structure of a spherical plant-virus (bromegrass mosaic-virus) established by neutron-diffraction. Philos Trans R Soc Lond Ser B-Biol Sci 276(943):109–112. doi:10.1098/rstb.1976.0101

    Article  CAS  Google Scholar 

  15. Cusack S, Ruigrok RWH, Krygsman PCJ, Mellema JE (1985) Structure and composition of influenza-virus—a small-angle neutron-scattering study. J Mol Biol 186(3):565–582. doi:10.1016/0022-2836(85)90131-7

    Article  CAS  PubMed  Google Scholar 

  16. Inoue H, Timmins PA (1985) The structure of rice dwarf virus determined by small-angle neutron-scattering measurements. Virology 147(1):214–216. doi:10.1016/0042-6822(85)90242-9

    Article  CAS  PubMed  Google Scholar 

  17. Witz J, Timmins PA, Adrian M (1993) Organization of turnip yellow mosaic-virus investigated by neutron small-angle scattering at 80-K—an intermediate state preceding decapsidation of the virion. Proteins 17(3):223–231. doi:10.1002/prot.340170302

    Article  CAS  PubMed  Google Scholar 

  18. Aramayo R, Merigoux C, Larquet E, Bron P, Perez J, Dumas C, Vachette P, Boisset N (2005) Divalent ion-dependent swelling of tomato bushy stunt virus: a multi-approach study. Biochim Biophys Acta-Gen Subj 1724(3):345–354. doi:10.1016/j.bbagen.2005.05.020

    Article  CAS  Google Scholar 

  19. He LL, Piper A, Meilleur F, Myles DAA, Hernandez R, Brown DT, Heller WT (2010) The structure of sindbis virus produced from vertebrate and invertebrate hosts as determined by small-angle neutron scattering. J Virol 84(10):5270–5276. doi:10.1128/jvi.00044-10

    Article  CAS  PubMed  Google Scholar 

  20. He LL, Piper A, Meilleur F, Hernandez R, Heller WT, Brown DT (2012) Conformational changes in sindbis virus induced by decreased pH are revealed by small-angle neutron scattering. J Virol 86(4):1982–1987. doi:10.1128/jvi.06569-11

    Article  CAS  PubMed  Google Scholar 

  21. Xiong ZG, Lommel SA (1991) Red-clover necrotic mosaic-virus infectious transcripts synthesized invitro. Virology 182(1):388–392. doi:10.1016/0042-6822(91)90687-7

    Article  CAS  PubMed  Google Scholar 

  22. Martin SL, Guenther RH, Sit TL, Swartz PD, Meilleur F, Lommel SA, Rose RB (2010) Crystallization and preliminary X-ray diffraction analysis of red clover necrotic mosaic virus. Acta Crystallogr F-Struct Biol Cryst Commun 66:1458–1462. doi:10.1107/s1744309110032483

    Article  CAS  Google Scholar 

  23. Lommel SA (1983) Ph.D. Dissertation. University of California, Berkeley, Berkeley, CA

  24. Lynn GW, Heller W, Urban V, Wignall GD, Weiss K, Myles DAA (2006) Bio-SANS—a dedicated facility for neutron structural biology at oak ridge national laboratory. Physica B 385–86:880–882. doi:10.1016/j.physb.2006.05.133

    Article  Google Scholar 

  25. Wignall GD, Bates FS (1987) Absolute calibration of small-angle neutron-scattering data. J Appl Crystallogr 20:28–40. doi:10.1107/s0021889887087181

    Article  CAS  Google Scholar 

  26. Kline SR (2006) Reduction and analysis of SANS and USANS data using IGOR Pro. J Appl Crystallogr 39:895–900. doi:10.1107/s0021889806035059

    Article  CAS  Google Scholar 

  27. Bailey S (1994) The CCP4 suite-programs for protein crystallography. Acta Crystallogr Sect D-Biol Crystallogr 50:760–763

    Article  Google Scholar 

  28. Tjioe E, Heller WT (2007) ORNL_SAS: software for calculation of small-angle scattering intensities of proteins and protein complexes. J Appl Crystallogr 40:782–785. doi:10.1107/s002188980702420x

    Article  CAS  Google Scholar 

  29. Heller WT (2006) ELLSTAT: shape modeling for solution small-angle scattering of proteins and protein complexes with automated statistical characterization. J Appl Crystallogr 39:671–675. doi:10.1107/s0021889806029591

    Article  CAS  Google Scholar 

  30. Li X, Shew CY, He LL, Meilleur F, Myles DAA, Liu E, Zhang Y, Smith GS, Herwig KW, Pynn R, Chen WR (2011) Scattering functions of Platonic solids. J Appl Crystallogr 44:545–557. doi:10.1107/s0021889811011691

    Article  CAS  Google Scholar 

  31. Choi YG, Rao ALN (2000) Molecular studies on bromovirus capsid protein VII. Selective packaging of BMV RNA4 by specific N-terminal arginine residues. Virology 275(1):207–217. doi:10.1006/viro.2000.0513

    Article  CAS  PubMed  Google Scholar 

  32. Katpally U, Kakani K, Reade R, Dryden K, Rochon D, Smith TJ (2007) Structures of T = 1 and T = 3 particles of cucumber necrosis virus: Evidence of internal scaffolding. J Mol Biol 365(2):502–512. doi:10.1016/j.jmb.2006.09.060

    Article  CAS  PubMed  Google Scholar 

  33. Lavelle L, Michel JP, Gingery M (2007) The disassembly, reassembly and stability of CCMV protein capsids. J Virol Methods 146(1–2):311–316. doi:10.1016/j.jviromet.2007.07.020

    Article  CAS  PubMed  Google Scholar 

  34. Hui E, Rochon D (2006) Evaluation of the roles of specific regions of the cucumber necrosis virus coat protein arm in particle accumulation and fungus transmission. J Virol 80(12):5968–5975. doi:10.1128/jvi.20485-05

    Article  CAS  PubMed  Google Scholar 

  35. Xiang Y, Kakani K, Reade R, Hui E, Rochon D (2006) A 38-amino-acid sequence encompassing the arm domain of the cucumber necrosis virus coat protein functions as a chloroplast transit peptide in infected plants. J Virol 80(16):7952–7964. doi:10.1128/jvi.00153-06

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL). The research at ORNL’s Center for Structural Molecular Biology (FWP ERKP291) was supported by the U.S. Department of Energy’s Office of Biological and Environmental Research. Work at HFIR was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U.S. Department of Energy under contract No. DO-AC05-00OR22725. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William T. Heller.

Additional information

S. L. Martin and L. He contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 49 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, S.L., He, L., Meilleur, F. et al. New insight into the structure of RNA in red clover necrotic mosaic virus and the role of divalent cations revealed by small-angle neutron scattering. Arch Virol 158, 1661–1669 (2013). https://doi.org/10.1007/s00705-013-1650-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-013-1650-6

Keywords

Navigation