Skip to main content
Log in

Selectivity enhancement of aromatic halogenation reactions at the micellar interface: effect of highly ionic media

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Halogenation (iodination and bromination) of various aromatic compounds has been studied in micellar media in order to observe the effect on regioselectivity and conversion of the reaction. The addition of surfactant causes a change in the chemical shifts of the aromatic proton resonance of phenol which proves the orientation of the aromatic compound on the micellar surface. However, increase in ionic strength of the reaction media affects the selectivity of reaction by disturbing this spatial orientation of the aromatic compound in the micelle. Selectivity towards particular isomers is dependent on the concentration of the surfactant. In bromination of chlorobenzene (deactivated aromatic compound) enhancement in selectivity and conversion towards the para isomer has been observed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dwars T, Paetzold E, Oehme G (2005) Angew Chem Int Ed 44:7174

    Article  CAS  Google Scholar 

  2. Wang F, Liu H, Cun L, Zhu J, Deng J, Jiang Y (2005) J Org Chem 70:9424

    Article  CAS  Google Scholar 

  3. Witula T, Holmberg K (2005) Langmuir 21:3782

    Article  CAS  Google Scholar 

  4. Samant BS, Saraf YP, Bhagwat SS (2006) J Colloid Interf Sci 302:207

    Article  CAS  Google Scholar 

  5. Samant BS, Sukhthankar MG (2009) Med Chem 5:293

    Article  CAS  Google Scholar 

  6. Samant BS (2008) Eur J Med Chem 43:1978

    Article  CAS  Google Scholar 

  7. Hassan PA, Bhagwat SS, Manohar C (1995) Langmuir 11:470

    Article  CAS  Google Scholar 

  8. Nagaonkar UC, Bhagwat SS (2007) Ind Eng Chem Res 46:1923

    Article  CAS  Google Scholar 

  9. Samant BS, Sukhthankar MG (2011) Biorg Med Chem Lett 21:1015

    Article  CAS  Google Scholar 

  10. Samant BS, Bhagwat SS (2011) Appl Catal A 394:191

    Article  CAS  Google Scholar 

  11. Samant BS, Bhagwat SS (2011) Chinese J Catal 32:231

    Article  CAS  Google Scholar 

  12. Samant BS, Kabalka GS (2011) Chem Comm 47:7236

    Article  CAS  Google Scholar 

  13. Kleenmann A, Engel J (2001) Pharmaceutical substances, 4th edn. Thieme, New York

  14. Vyas PV, Bhatt AK, Gadde R, Bedekar AV (2003) Tetrahedron Lett 44:4085

    Article  CAS  Google Scholar 

  15. Patil BR, Bhusare SR, Pawar RP, Vibhute YB (2006) Arkivoc 1:104

    Google Scholar 

  16. Das B, Krishnaiah M, Venkateswarly K, Reddy VS (2007) Tetrahedron Lett 48:81

    Article  CAS  Google Scholar 

  17. Kalyani D, Dick AR, Anani WQ, Sanford MS (2006) Org Lett 8:2523

    Article  CAS  Google Scholar 

  18. Da Frota LCMR, Canavez RCP, da Silva Gomez SL, Costa PRR, da Silva AJM (2009) J Braz Chem Soc 20:1916

    Article  CAS  Google Scholar 

  19. Hajipour AR, Falahati AR, Ruoho AE (2006) Tetrahedron Lett 47:4191

    Article  CAS  Google Scholar 

  20. Jafarzadeh M, Hosseini A, Shokrollahzadeh M, Halvagar MR, Ahmadi D, Mohannazadeh F, Tajbakhsh M (2006) Tetrahedron Lett 47:3525

    Article  Google Scholar 

  21. Gallo RDC, Gebara KS, Muzzi RM, Raminelli C (2010) J Braz Chem Soc 21:770

    Article  CAS  Google Scholar 

  22. Ganguly NC, Barik SK, Dutta S (2010) Synthesis 9:1467

    Article  Google Scholar 

  23. Firouzabadi H, Iranpoor N, Kazemi S (2009) Can J Chem 87:1675

    Article  CAS  Google Scholar 

  24. Kiran YB, Konakahara T, Sakai NA (2008) Synthesis 15:2327

    Google Scholar 

  25. Kraszkiewicz L, Sosnowski M, Skulski L (2006) Synthesis 7:1195

    Google Scholar 

  26. Tee OS, Bennett JM (1988) J Am Chem Soc 110:269

    Article  CAS  Google Scholar 

  27. Onyiriuka SO, Suckling CJ (1986) J Org Chem 51:1900

    Article  CAS  Google Scholar 

  28. Iskra J, Stavber S, Zupan M (2004) Synthesis 11:1869

    Google Scholar 

  29. Podgorsek A, Zupan M, Iskra J (2009) Angew Chem Int Ed 48:8424

    Article  CAS  Google Scholar 

  30. Stavber S, Jereb M, Zupan M (2008) Synthesis 10:1487

    Article  Google Scholar 

  31. Tajik H, Dadras A, Hosseini A (2011) Synth React Inorg Met Org Nano Met Chem 41:258

    CAS  Google Scholar 

  32. Podgorsek A, Stavber S, Zupan M, Iskra J (2009) Tetrahedron 65:4429

    Article  CAS  Google Scholar 

  33. Stavber G, Zupan M, Stavber S (2009) Synlett 4:589

    Article  Google Scholar 

  34. Stavber G, Iskra J, Zupan M, Stavber S (2009) Green Chem 11:1262

    Article  CAS  Google Scholar 

  35. Stavber G, Zupan M, Jereb M, Stavber S (2004) Org Lett 6:4973

    Article  CAS  Google Scholar 

  36. Espenson JH, Zhu Z, Zauche TH (1999) J Org Chem 64:1191

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Rhodes University Joint Research Committee (JRC) for providing financial support for this work (Rhodes University JRC grant number 35047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupesh S. Samant.

Electronic supplementary material

Below is the link to the electronic supplementary material, which includes 1H NMR spectra for the solubilization study of phenol.

Supplementary material 1 (DOCX 294 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samant, B.S., Bhagwat, S.S. Selectivity enhancement of aromatic halogenation reactions at the micellar interface: effect of highly ionic media. Monatsh Chem 143, 1039–1044 (2012). https://doi.org/10.1007/s00706-011-0677-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-011-0677-1

Keywords

Navigation