Skip to main content
Log in

Adsorption, photodegradation, and selective removal of reactive red 2 dye onto cuprous oxide nanoparticles

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Environmentally friendly nanoparticles are often utilized to remediate organic pollutants such as dyes in water bodies. Herein, we describe the adsorption and photocatalytic properties of Cu2O nanoparticles (Cu2ONPs) for the removal of reactive red 2 dye (RR2) from synthetic dye solutions. Cu2ONPs as an adsorbent is synthesized by direct precipitation method using sodium hydroxide with cupric chloride in the existence of ascorbic acid as a reducing agent. Scanning electron microscopy (SEM), X-ray diffraction (XRD), dynamic light scattering (DLS) and Fourier transform infrared (FT-IR) analysis were used to characterize the synthesized Cu2ONPs. SEM images show that the average size as-prepared of Cu2ONPs was determined to be 62.84 ± 11 nm with a homogenous cubic shape. The zeta potential of NPs was measured to be + 22 ± 5 mV with a hydrodynamic diameter of 147 ± 8 nm, according to DLS results. The nanoparticles exhibit excellent adsorption activity for RR2 solution (10–60 μg cm−3) at room temperature and pH 5. The RR2 dye adsorption on nanoparticles in the existence of dark and UV light conditions was investigated. Our results indicate that the removal percentage of adsorption in the dark is around 78% and in the light is about 90%. Adsorption behaviors of the Cu2ONPs adsorbent fit well with pseudo-second-order kinetic model and Langmuir isotherm. The Cu2ONPs were also found to be highly selective for anionic RR2 over cationic methylene blue dye, allowing facile separation of the two dyes from aqueous solutions of dye mixtures. The results also show that Cu2ONPs have good recyclability, indicating that they would be a cost-effective material with a considerable possibility in water treatment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Radwan NRE, El-Shall MS, Hassan HMA (2007) Appl Catal A 331:8

    Article  CAS  Google Scholar 

  2. Evans S, Campbell C, Naidenko OV (2019) Heliyon 5:e02314

    Article  PubMed  PubMed Central  Google Scholar 

  3. Masoudian N, Rajabi M, Ghaedi M (2019) Polyhedron 173:114105

    Article  CAS  Google Scholar 

  4. Joshi S, Garg VK, Kataria N, Kadirvelu K (2019) Chemosphere 236:124280

    Article  CAS  PubMed  Google Scholar 

  5. Sartape AS, Mandhare AM, Jadhav VV, Raut PD, Anuse MA, Kolekar SS (2017) Arab J Chem 10:S3229

    Article  CAS  Google Scholar 

  6. Hajati S, Ghaedi M, Mahmoudi Z, Sahraei R (2015) Spectrochim Acta Part A Mol Biomol Spectrosc 150:1002

    Article  CAS  Google Scholar 

  7. Wu Y, Su M, Chen J, Xu Z, Tang J, Chang X, Chen D (2019) Dyes Pigm 170:107591

    Article  CAS  Google Scholar 

  8. Fan M, Wang Y, Wang Z, Zhao Y, Gao B, Chu Y, Zhou W, Yan C (2019) J Clean Prod 238:117984

    Article  CAS  Google Scholar 

  9. Zhan Y, Wan X, He S, Yang Q, He Y (2018) Chem Eng J 333:132

    Article  CAS  Google Scholar 

  10. Li X, Shi J-L, Hao H, Lang X (2018) Appl Catal B Environ 232:260

    Article  CAS  Google Scholar 

  11. Yousefi M, Villar-Rodil S, Paredes JI, Moshfegh AZ (2019) J Alloys Compd 809:151783

    Article  CAS  Google Scholar 

  12. Zheng Y, Cheng B, You W, Yu J, Ho W (2019) J Hazard Mater 369:214

    Article  CAS  PubMed  Google Scholar 

  13. Wu Z, Zhang H, Luo L, Tu W (2019) J Alloys Compd 806:823

    Article  CAS  Google Scholar 

  14. Jawad AH, Abdulhameed AS (2020) Surf Interfaces 18:100422

    Article  CAS  Google Scholar 

  15. Jawad AH, Abdulhameed AS, Mastuli MS (2020) J Polym Environ 28:1095

    Article  CAS  Google Scholar 

  16. Abdulhameed AS, Mohammad AT, Jawad AH (2019) Desalin Water Treat 164:346

    Article  CAS  Google Scholar 

  17. Jawad AH, Abdulhameed AS, Mastuli MS (2020) J Taibah Univ Sci 14:305

    Article  Google Scholar 

  18. Sun J, Song T, Wang J, Guo X, Su L, Tu W (2020) SN Appl Sci 2:1103

    Article  CAS  Google Scholar 

  19. Sharma JK, Srivastava P, Singh G, Akhtar MS, Ameen S (2015) Thermochim Acta 614:110

    Article  CAS  Google Scholar 

  20. Lansari I, Benguella B, Kruchinina N, Nistratov A (2022) React Kinet Mech Catal 135:987

    Article  CAS  Google Scholar 

  21. Shinde DR, Tambade PS, Chaskar MG, Gadave KM (2017) Drink Water Eng Sci 10:109

    Article  CAS  Google Scholar 

  22. Kumar RV, Mastai Y, Diamant Y, Gedanken A (2001) J Mater Chem 11:1209

    Article  CAS  Google Scholar 

  23. Self K, Zhou W (2016) Cryst Growth Des 16:5377

    Article  CAS  Google Scholar 

  24. Dai P, Mook HA, Aeppli G, Hayden SM, Doğan F (2000) Nature 406:965

    Article  CAS  PubMed  Google Scholar 

  25. Briskman RN (1992) Sol Energy Mater Sol Cells 27:361

    Article  CAS  Google Scholar 

  26. Khan MA, Ullah M, Iqbal T, Mahmood H, Khan AA, Shafique M, Majid A, Ahmed A, Khan NA (2015) Nanosci Nanotechnol Res 3:16

    CAS  Google Scholar 

  27. Zhang J, Liu J, Peng Q, Wang X, Li Y (2006) Chem Mater 18:867

    Article  CAS  Google Scholar 

  28. White B, Yin M, Hall A, Le D, Stolbov S, Rahman T, Turro N, O’Brien S (2006) Nano Lett 6:2095

    Article  CAS  PubMed  Google Scholar 

  29. Li J, Yu N, Geng H (2016) Phys Chem Chem Phys 18:21562

    Article  CAS  PubMed  Google Scholar 

  30. Liu R, Kulp EA, Oba F, Bohannan EW, Ernst F, Switzer JA (2005) Chem Mater 17:725

    Article  CAS  Google Scholar 

  31. Liu YL, Liu YC, Mu R, Yang H, Shao CL, Zhang JY, Lu YM, Shen DZ, Fan XW (2004) Semicond Sci Technol 20:44

    Article  CAS  Google Scholar 

  32. Kangralkar MV, Kangralkar VA, Momin N, Manjanna J (2019) Env Nanotechnol Monit Manag 12:100265

    Google Scholar 

  33. Riyat M, Islam R, Salam A, Molla M, Hossain T, Islam M, Bashar M, Chandra D, Ahsan S, Roy D, Ahsan M (2022) React Kinet Mech Catal 135:1077

    Article  CAS  Google Scholar 

  34. Zhang H, Duan C, Xu Z, Yin J (2022) React Kinet Mech Catal 135:1099

    Article  CAS  Google Scholar 

  35. Topnani N, Kushwaha S, Athar T (2010) Int J Green Nanotechnol Mater Sci Eng 1:M67

    Article  Google Scholar 

  36. Bellir K, Bencheikh-Lehocine M, Meniai AH (2010) Int Renew Energy Congr 2010:360

    Google Scholar 

  37. Hussein FH, Halbus AF, Hassan HAK, Hussein WAK (2010) E-Journal Chem 7:540

    Article  CAS  Google Scholar 

  38. Kamil AM, Hussein FH, Halbus AF, Bahnemann DW (2014) Int J Photoenergy 2014:475713

    Article  CAS  Google Scholar 

  39. Ahmed LM, Alkaim AF, Halbus AF, Hussein FH (2016) Int J ChemTech Res 9:90

    CAS  Google Scholar 

  40. Lagergren S (1898) Handlingar 24:1

    Google Scholar 

  41. Ho Y-S, McKay G (1999) Process Biochem 34:451

    Article  CAS  Google Scholar 

  42. Zhou C, Wu Q, Lei T, Negulescu II (2014) Chem Eng J 251:17

    Article  CAS  Google Scholar 

  43. Fawzy MA, Gomaa M (2021) J Appl Phycol 33:675

    Article  CAS  Google Scholar 

  44. Bhavyasree PG, Xavier TS (2021) Curr Res Green Sustain Chem 4:100161

    Article  CAS  Google Scholar 

  45. Rathinam K, Kou X, Hobby R, Panglisch S (2021) Mater 14:7701

    Article  CAS  Google Scholar 

  46. Cao Y, Xu Y, Hao H, Zhang G (2014) Mater Lett 114:88

    Article  CAS  Google Scholar 

  47. Halbus AF, Lafta AJ, Athab ZH, Hussein FH (2014) Asian J Chem 26:S167

    Article  Google Scholar 

  48. Hussein FH, Halbus AF (2012) Int J Photoenergy 2012:495435

    Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the Department of Chemistry, College of Science, University of Babylon for providing research facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed F. Halbus.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halbus, A.F., Athab, Z.H., Abbas, A.S. et al. Adsorption, photodegradation, and selective removal of reactive red 2 dye onto cuprous oxide nanoparticles. Monatsh Chem 153, 597–607 (2022). https://doi.org/10.1007/s00706-022-02955-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-022-02955-3

Keywords

Navigation