Skip to main content
Log in

Probing the binding mechanism of the verbascoside and human serum albumin by fluorescence spectroscopy and molecular docking approach

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The interactional mechanism and conformational changes of the verbascoside–human serum albumin (VB–HSA) complex were rigorously examined via fluorescence spectroscopy (FS), synchronous FS (S-FS), three-dimensional (3D) FS, and molecular docking (MD). Based on our analysis, VB quenched the HSA intrinsic fluorescence via a combinatory static and dynamic quenching mechanism. The binding constant and quantity of binding sites were next calculated using the Scatchard equation. The thermodynamic variables revealed that the van der Waals forces and hydrogen bonding (H-bonding) were dominant interacting forces in the VB–HSA complex. Furthermore, using displacement examinations with site markers, we showed that VB interacted with HSA at site II (subdomain IIIA). Additionally, based on our S-FS and 3D FS analyses, VB and HSA binding altered the polarity and microenvironment surrounding the tyrosine residues. Lastly, the interaction between VB and HSA amino acid residues was further validated using MD. The binding sites of VB in HSA from the MD analysis and the competition experiment remained consistent. This experiment comprehensively reflected the interaction between VB and HSA via the quenching type, number of binding sites, binding constant, force type, binding distance, binding site, and VB effect on the conformation of HSA. Our conclusions provide a basis for the future examination of the transport mechanism and action mechanism of VB in vivo, which is of great significance for the in-depth understanding of the pharmacokinetics and pharmacodynamics of VB.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Isacchi B, Bergonzi MC, Iacopi R, Ghelardini C, Galeotti N, Bilia AR (2017) Planta Med 83:412

    CAS  Google Scholar 

  2. Zhang Y, Yuan Y, Wu H, Xie Z, Wu Y, Song X, Wang J, Shu W, Xu J, Liu B, Wan L, Yan Y, Ding X, Shi X, Pan Y, Li X, Yang J, Zhao X, Wang L (2018) Int J Cancer 143:980

    Article  CAS  Google Scholar 

  3. Vertuani S, Beghelli E, Scalambra E, Malisardi G, Copetti S, Toso RD, Baldisserotto A, Manfredini SC (2011) Molecules 16:7068

    Article  CAS  Google Scholar 

  4. Speranza L, Franceschelli S, Pesce M, Reale M, Menghini L, Vinciguerra I, De Lutiis MA, Felaco M, Grilli A (2010) Phytother Res 24:1398

    Article  CAS  Google Scholar 

  5. D’Imperio M, Cardinali A, D’Antuono I, Linsalata V, Minervini F, Redan BW, Ferruzzi MG (2014) Food Res Int 66:373

    Article  CAS  Google Scholar 

  6. Zhu M, Zhu H, Tan N, Wang H, Chu H, Zhang C (2016) Neurosci Lett 616:75

    Article  CAS  Google Scholar 

  7. Campo G, Pavasini R, Biscaglia S, Ferri A, Andrenacci E, Tebaldi M, Ferrari R (2015) Pharmacol Res 97:1

    Article  CAS  Google Scholar 

  8. Wan Y, Zou B, Zeng H, Zhang L, Chen M, Fu G (2016) Int J Biol Macromol 93:609

    Article  CAS  Google Scholar 

  9. Li Y, Yu H, Jin Y, Li M, Qu C (2018) Int Arch Allergy Immunol 175:220

    Article  CAS  Google Scholar 

  10. Maquiaveli CC, Lucon-Junior JF, Brogi S, Campiani G, Gemma S, Vieira PC, Silva ER (2016) J Nat Prod 79:1459

    Article  CAS  Google Scholar 

  11. Zhao X, Li H, Wang J, Guo Y, Liu B, Deng X, Niu X (2016) Mol Pharmacol 89:376

    Article  CAS  Google Scholar 

  12. Esposito E, Dal Toso R, Pressi G, Bramanti P, Meli R, Cuzzocrea S (2010) Naunyn-Schmiedeberg’s Arch Pharmacol 381:93

    Article  CAS  Google Scholar 

  13. Cardinali A, Rotondo F, Minervini F, Linsalata V, D’Antuono I Debellis Ferruzzi MG (2013) Food Res Int 54:132

  14. Casamassima D, Palazzo M, Vizzarri F, Costagliola C, Mosca M, Ambrosone L (2013) J Am Coll Nutr 32:391

    Article  CAS  Google Scholar 

  15. Oyourou JN, Combrinck S, Regnier T, Marston A (2013) Ind Crops Prod 43:820

    Article  CAS  Google Scholar 

  16. Shaw AK, Pal SK (2008) J Photochem Photobiol B 90:187

    Article  CAS  Google Scholar 

  17. Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K (1999) Protein Eng 12:439

    Article  CAS  Google Scholar 

  18. He XM, Carter DC (1992) Nature 358:209

    Article  CAS  Google Scholar 

  19. Yue Y, Liu J, Liu R, Sun Y, Li X, Fan J (2014) Food Chem Toxicol 71:244

    Article  CAS  Google Scholar 

  20. Yue Y, Liu J, Fan J, Yao X (2011) J Pharm Biomed Anal 56:336

    Article  CAS  Google Scholar 

  21. Wei Y-L, Li J-Q, Dong C, Shuang S-M, Liu D-S, Huie CW (2006) Talanta 70:377

    Article  CAS  Google Scholar 

  22. Jiang H, An J, Jiang Y (2007) Acad J Sec Mil Med Univ 28:662

    CAS  Google Scholar 

  23. Yu X, Xin Y, Gao Q (2016) Kejifeng 15:8

    Google Scholar 

  24. Xie M-X, Long M, Liu Y, Qin C, WangY-D (2006) Biochim Biophys Acta Gen Subj 1760:1184

  25. Macii F, Biver T (2021) J Inorg Biochem 216:11305

    Article  Google Scholar 

  26. Eftink MR, Ghiron CA (1981) Anal Biochem 114:199

    Article  CAS  Google Scholar 

  27. Kathiravan A, Chandramoha M, Renganathan R, Sekar S (2009) J Mol Struct 919:210

    Article  CAS  Google Scholar 

  28. Ware WR (1962) J Phys Chem 66:455

    Article  CAS  Google Scholar 

  29. Xiang G, Tong C, Lin H (2007) J Fluoresc 17:512

    Article  CAS  Google Scholar 

  30. Gokara M, Sudhamalla B, Amoor DG, Subramanyam R (2010) PLoS ONE 5:e8834

    Article  Google Scholar 

  31. Almutairi FM, Ajmal MR, Siddiqi MK, Amir M, Khan RH (2020) J Mol Struct 1201:127147

    Article  CAS  Google Scholar 

  32. Dezhampanah H, Firouzi R, Shoeili ZM, Binazir R (2020) J Mol Struct 1205:127557

    Article  CAS  Google Scholar 

  33. Mote US, Bhattar SL, Patil SR, Kolekar GB (2010) Luminescence 25:1

    CAS  Google Scholar 

  34. Xu L, Liu Y-N, Mei W-J, Huang X-M, Chen T-F, Liu J, Zheng W-J (2010) Chem Res Chin Univ 26:693

    CAS  Google Scholar 

  35. Petitpas I, Bhattacharya AA, Twine S, East M, Curry S (2001) J Biol Chem 276:22804

    Article  CAS  Google Scholar 

  36. Maji A, Beg M, Das S, Jana GC, Jha PK, Islam MM, Hossain M (2019) J Mol Struct 1179:685

    Article  CAS  Google Scholar 

  37. Xu S, Lin D, Yao S (2016) Acta Phys-Chim Sin 32:2811

    Article  CAS  Google Scholar 

  38. Ibrahim N, Ibrahim H, Kim S, Nallet J-P, Nepveu F (2010) Biomacromol 11:3341

    Article  CAS  Google Scholar 

  39. Mandal P, Ganguly T (2009) J Phys Chem B 113:14904

    Article  CAS  Google Scholar 

  40. Zaroog MS, Tayyab S (2012) Process Biochem 47:775

    Article  CAS  Google Scholar 

  41. Wang Y-Q, Tang B-P, Zhang H-M, Zhou Q-H, Zhang G-C (2009) J Photochem Photobiol B 94:183

    Article  CAS  Google Scholar 

  42. Wang Y, Wang X, Wa ng J, Zhao Y, He W, Guo Z (2011) Inorg Chem 50:12661

  43. Khalaf HAA, Jasim RA, Ibrahim IT (2021) Pharmacol Pharm 12:109

    Article  CAS  Google Scholar 

  44. Sudlow G, Birkett DJ, Wade DN (1976) Mol Pharmacol 12:1052

    CAS  Google Scholar 

  45. Sjoholm I, Ekman BO, Kober A, Ljungstedtpåhlman I, Seiving B, Sjodin T (1979) Mol Pharmacol 16:767

    CAS  Google Scholar 

  46. Frisch MJ (2006) Chem Listy 100:A9

    Google Scholar 

  47. Park H, Lee J, Lee S (2006) Proteins 65:549

    Article  CAS  Google Scholar 

  48. Feroz SR, Mohamad SB, Bujang N, Malek SNA, Tayyab S (2012) J Agric Food Chem 60:5899

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31200048), the Yantai Science and Technology Development Project, Shandong Province, China (2019XDHZ092), and Edible Fungus Industrial System Post Expert of Modern Agricultural Industrial Technology System of Shandong Province, Genetic Breeding Post, Lunong Technology (2016) No. 18.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-ying Bao or Rui Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Sj., Zheng, N., Zhang, Ml. et al. Probing the binding mechanism of the verbascoside and human serum albumin by fluorescence spectroscopy and molecular docking approach. Monatsh Chem 154, 151–158 (2023). https://doi.org/10.1007/s00706-022-03002-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-022-03002-x

Keywords

Navigation