Skip to main content
Log in

A quasi-3D hyperbolic shear deformation theory for functionally graded plates

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A quasi-3D hyperbolic shear deformation theory for functionally graded plates is developed. The theory accounts for both shear deformation and thickness-stretching effects by a hyperbolic variation of all displacements across the thickness, and satisfies the stress-free boundary conditions on the top and bottom surfaces of the plate without requiring any shear correction factor. The benefit of the present theory is that it contains a smaller number of unknowns and governing equations than the existing quasi-3D theories, but its solutions compare well with 3D and quasi-3D solutions. Equations of motion are derived from the Hamilton principle. Analytical solutions for bending and free vibration problems are obtained for simply supported plates. Numerical examples are presented to verify the accuracy of the present theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nguyen T.K., Sab K., Bonnet G.: First-order shear deformation plate models for functionally graded materials. Compos. Struct. 83(1), 25–36 (2008)

    Article  Google Scholar 

  2. Zhao X., Lee Y.Y., Liew K.M.: Free vibration analysis of functionally graded plates using the element-free kp–Ritz method. J. Sound Vib. 319(3–5), 918–939 (2009)

    Article  Google Scholar 

  3. Hosseini-Hashemi S., Rokni Damavandi Taher H., Akhavan H., Omidi M.: Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory. Appl. Math. Model. 34(5), 1276–1291 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Hosseini-Hashemi S., Fadaee M., Atashipour S.R.: A new exact analytical approach for free vibration of Reissner–Mindlin functionally graded rectangular plates. Int. J. Mech. Sci. 53(1), 11–22 (2011)

    Article  Google Scholar 

  5. Irschik H.: On vibrations of layered beams and plates. J. Appl. Math. Mech. 73(4–5), 34–45 (1993)

    MathSciNet  Google Scholar 

  6. Nosier A., Fallah F.: Reformulation of Mindlin–Reissner governing equations of functionally graded circular plates. Acta Mech. 198(3–4), 209–233 (2008)

    Article  MATH  Google Scholar 

  7. Saidi A.R., Baferani A.H., Jomehzadeh E.: Benchmark solution for free vibration of functionally graded moderately thick annular sector plates. Acta Mech. 219(3–4), 309–335 (2011)

    Article  MATH  Google Scholar 

  8. Yang B., Ding H.J., Chen W.Q.: Elasticity solutions for a uniformly loaded rectangular plate of functionally graded materials with two opposite edges simply supported. Acta Mech. 207(3–4), 245–258 (2009)

    Article  MATH  Google Scholar 

  9. Zenkour A.M., Allam M.N.M., Shaker M.O., Radwan A.F.: On the simple and mixed first-order theories for plates resting on elastic foundations. Acta Mech. 220(1–4), 33–46 (2011)

    Article  MATH  Google Scholar 

  10. Reddy J.N.: Analysis of functionally graded plates. Int. J. Numer. Methods Eng. 47(1–3), 663–684 (2000)

    Article  MATH  Google Scholar 

  11. Ferreira A.J.M., Batra R.C., Roque C.M.C., Qian L.F., Martins P.A.L.S.: Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method. Compos. Struct. 69(4), 449–457 (2005)

    Article  Google Scholar 

  12. Ferreira A.J.M., Batra R.C., Roque C.M.C., Qian L.F., Jorge R.M.N.: Natural frequencies of functionally graded plates by a meshless method. Compos. Struct. 75(1–4), 593–600 (2006)

    Article  Google Scholar 

  13. Zenkour A.M.: Generalized shear deformation theory for bending analysis of functionally graded plates. Appl. Math. Model. 30(1), 67–84 (2006)

    Article  MATH  Google Scholar 

  14. Pradyumna S., Bandyopadhyay J.N.: Free vibration analysis of functionally graded curved panels using a higher-order finite element formulation. J. Sound Vib. 318(1–2), 176–192 (2008)

    Article  Google Scholar 

  15. Bodaghi M., Saidi A.R.: Levy-type solution for buckling analysis of thick functionally graded rectangular plates based on the higher-order shear deformation plate theory. Appl. Math. Model. 34(11), 3659–3673 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hosseini-Hashemi S., Fadaee M., Atashipour S.R.: Study on the free vibration of thick functionally graded rectangular plates according to a new exact closed-form procedure. Compos. Struct. 93(2), 722–735 (2011)

    Article  Google Scholar 

  17. Xiang S., Jin Y.X., Bi Z.Y., Jiang S.X., Yang M.S.: A n-order shear deformation theory for free vibration of functionally graded and composite sandwich plates. Compos. Struct. 93(11), 2826–2832 (2011)

    Article  Google Scholar 

  18. Qian L.F., Batra R.C., Chen L.M.: Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov–Galerkin method. Compos. Part B 35(6–8), 685–697 (2004)

    Article  Google Scholar 

  19. Carrera E., Brischetto S., Cinefra M., Soave M.: Effects of thickness stretching in functionally graded plates and shells. Compos. Part B 42(2), 123–133 (2011)

    Article  Google Scholar 

  20. Kant T., Swaminathan K.: Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory. Compos. Struct. 56(4), 329–344 (2002)

    Article  Google Scholar 

  21. Chen C.S., Hsu C.Y., Tzou G.J.: Vibration and stability of functionally graded plates based on a higher-order deformation theory. J. Reinf. Plast. Compos. 28(10), 1215–1234 (2009)

    Article  Google Scholar 

  22. Talha M., Singh B.N.: Static response and free vibration analysis of FGM plates using higher order shear deformation theory. Appl. Math. Model. 34(12), 3991–4011 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Reddy J.N.: A general nonlinear third-order theory of functionally graded plates. Int. J. Aerosp. Lightweight Struct. 1(1), 1–21 (2011)

    Article  Google Scholar 

  24. Neves A.M.A., Ferreira A.J.M., Carrera E., Cinefra M., Roque R.M.N., Jorge C.M.C., Soares C.M.M.: Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique. Compos. Part B 44(1), 657–674 (2013)

    Article  Google Scholar 

  25. Ferreira A.J.M., Carrera E., Cinefra M., Roque C.M.C., Polit O.: Analysis of laminated shells by a sinusoidal shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations. Compos. Part B 42(5), 1276–1284 (2011)

    Article  Google Scholar 

  26. Neves A.M.A., Ferreira A.J.M., Carrera E., Roque C.M.C., Cinefra M., Jorge R.M.N., Soares C.M.M.: A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates. Compos. Part B 43(2), 711–725 (2012)

    Article  Google Scholar 

  27. Neves A.M.A., Ferreira A.J.M., Carrera E., Cinefra M., Roque C.M.C., Jorge R.M.N., Soares C.M.M.: A quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates. Compos. Struct. 94(5), 1814–1825 (2012)

    Article  Google Scholar 

  28. Mantari J.L., Guedes Soares C.: Generalized hybrid quasi-3D shear deformation theory for the static analysis of advanced composite plates. Compos. Struct. 94(8), 2561–2575 (2012)

    Article  Google Scholar 

  29. Soldatos K.P.: A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mech. 94(3), 195–220 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  30. Xiang S., Wang K.M., Ai Y.T., Sha Y.D., Shi H.: Analysis of isotropic, sandwich and laminated plates by a meshless method and various shear deformation theories. Compos. Struct. 91(1), 31–37 (2009)

    Article  Google Scholar 

  31. Akavci S.: Two new hyperbolic shear displacement models for orthotropic laminated composite plates. Mech. Compos. Mater. 46(2), 215–226 (2010)

    Article  Google Scholar 

  32. El Meiche N., Tounsi A., Ziane N., Mechab I., Adda Bedia E.A.: A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate. Int. J. Mech. Sci. 53(4), 237–247 (2011)

    Article  Google Scholar 

  33. Zenkour A.: Benchmark trigonometric and 3-D elasticity solutions for an exponentially graded thick rectangular plate. Arch. Appl. Mech. 77(4), 197–214 (2007)

    Article  MATH  Google Scholar 

  34. Mantari J.L., Guedes Soares C.: A novel higher-order shear deformation theory with stretching effect for functionally graded plates. Compos. Part B 45(1), 268–281 (2013)

    Article  Google Scholar 

  35. Mantari J.L., Guedes Soares C.: Bending analysis of thick exponentially graded plates using a new trigonometric higher order shear deformation theory. Compos. Struct. 94(6), 1991–2000 (2012)

    Article  Google Scholar 

  36. Mori T., Tanaka K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21(5), 571–574 (1973)

    Article  Google Scholar 

  37. Vel S.S., Batra R.C.: Three-dimensional exact solution for the vibration of functionally graded rectangular plates. J. Sound Vib. 272(3–5), 703–730 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huu-Tai Thai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thai, HT., Vo, T.P., Bui, T.Q. et al. A quasi-3D hyperbolic shear deformation theory for functionally graded plates. Acta Mech 225, 951–964 (2014). https://doi.org/10.1007/s00707-013-0994-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-0994-z

Keywords

Navigation