Skip to main content
Log in

An immersed boundary method for flows with dense particle suspensions

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The immersed boundary method (IBM) is a well-suited tool for the direct numerical simulation of flows with dense particle suspensions, which feature strong and complex flow-particle and particle–particle interactions. With the aim to model such flows, this paper proposes to extend the Regularised Discrete Momentum Forcing (RDMF-) IBM of Abdol Azis et al. (2018) to immersed boundaries (IBs) whose motion is coupled to the flow. A modification to the direct-forcing formulation, resulting in an offset of the imposed no-slip boundary from a moving immersed boundary, is proposed. This offset is exploited in an iterative strong flow-particle coupling scheme, where the boundary forces are applied at the location of the IB known from the previous time level, while correctly enforcing the no-slip condition at the new location of the IB. This avoids having to reconstruct the interpolation and spreading stencils for every linear iteration of the flow-particle coupling, therefore reducing the computational load of the method. A technique to ensure the stable modelling of flows involving light particles is also presented and is shown to stably cope with a wide range of particle–fluid density ratios. The framework is validated by comparing the results of the simulation of a single sedimenting sphere with published experimental results. Simulations of the fluidisation of heavy rigid particles, as well as of the ascent of closely packed light particles, are also presented. Use of the radius retraction procedure, to compensate for the diffuse representation of the smooth-interface IBM, is demonstrated to consistently yield significant improvements for moving IB cases with low to intermediate Reynolds numbers. The present framework shows good stability properties for a wide range of flow regimes with concentrated particle suspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdol Azis, M.H., Evrard, F., van Wachem, B.: An immersed boundary method for incompressible flows in complex domains. Submitted (2018)

  2. Abraham, F.F.: Functional dependence of drag coefficient of a sphere on Reynolds number. Phys. Fluids 13(8), 2194 (1970)

    Article  Google Scholar 

  3. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. (TOMS) 22(4), 469–483 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biegert, E., Vowinckel, B., Meiburg, E.: A collision model for grain-resolving simulations of flows over dense, mobile, polydisperse granular sediment beds. J. Comput. Phys. 340(March), 105–127 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borazjani, I., Ge, L., Sotiropoulos, F.: Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. J. Comput. Phys. 227(16), 7587–7620 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Breugem, W.-P.: A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows. J. Comput. Phys. 231(13), 4469–4498 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Causin, P., Gerbeau, J., Nobile, F.: Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Comput. Methods Appl. Mech. Eng. 194(42–44), 4506–4527 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. de Tullio, M., Pascazio, G.: A moving-least-squares immersed boundary method for simulating the fluid-structure interaction of elastic bodies with arbitrary thickness. J. Comput. Phys. 325(August), 201–225 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deen, N.G., Kriebitzsch, S.H.L., van der Hoef, M.A., Kuipers, J.A.M.: Direct numerical simulation of flow and heat transfer in dense fluid–particle systems. Chem. Eng. Sci. 81, 329–344 (2012)

    Article  Google Scholar 

  10. Denner, F., van der Heul, D.R., Oud, G.T., Villar, M.M., da Silveira Neto, A., van Wachem, B.G.M.: Comparative study of mass-conserving interface capturing frameworks for two-phase flows with surface tension. Int. J. Multiphase Flow 61, 37–47 (2014)

    Article  MathSciNet  Google Scholar 

  11. Glowinski, R., Pan, T., Hesla, T., Joseph, D., Périaux, J.: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J. Comput. Phys. 169(2), 363–426 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Haeri, S., Shrimpton, J.: On the application of immersed boundary, fictitious domain and body-conformal mesh methods to many particle multiphase flows. Int. J. Multiphase Flow 40, 38–55 (2012)

    Article  Google Scholar 

  13. Hamming, R.W.: Stable predictor–corrector methods for ordinary differential equations. J. ACM 6(1), 37–47 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  14. Irons, B.M., Tuck, R.C.: A version of the Aitken accelerator for computer iteration. Int. J. Numer. Methods Eng. 1(3), 275–277 (1969)

    Article  MATH  Google Scholar 

  15. Kempe, T., Fröhlich, J.: An improved immersed boundary method with direct forcing for the simulation of particle laden flows. J. Comput. Phys. 231(9), 3663–3684 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kempe, T., Fröhlich, J.: Collision modelling for the interface-resolved simulation of spherical particles in viscous fluids. J. Fluid Mech. 709, 445–489 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Küttler, U., Wall, W.A.: Vector extrapolation for strong coupling fluid–structure interaction solvers. J. Appl. Mech. 76(2), 021205 (2009)

    Article  Google Scholar 

  18. Le Tallec, P.: Fluid structure interaction with large structural displacements. Comput. Methods Appl. Mech. Eng. 190(24–25), 3039–3067 (2001)

    Article  MATH  Google Scholar 

  19. Mohaghegh, F., Udaykumar, H.S.: Comparison of sharp and smoothed interface methods for simulation of particulate flows I: fluid structure interaction for moderate Reynolds numbers. Comput. Fluids 140, 39–58 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mohaghegh, F., Udaykumar, H.S.: Comparison of sharp and smoothed interface methods for simulation of particulate flows II: inertial and added mass effects. Comput. Fluids 143, 103–119 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mohd-Yusof, J.: Combined immersed boundary/B-spline methods for simulation of flow in complex geometries. In: Center for Turbulence Research Annual Research Briefs, pp. 317–328 (1997)

  22. Mordant, N., Pinton, J.F.: Velocity measurement of a settling sphere. Eur. Phys. J. B 18, 343–352 (2000)

    Article  Google Scholar 

  23. Onural, L.: Impulse functions over curves and surfaces and their applications to diffraction. J. Math. Anal. Appl. 322(1), 18–27 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pan, Y., Tanaka, T., Tsuji, Y.: Turbulence modulation by dispersed solid particles in rotating channel flows. Int. J. Multiphase Flow 28(4), 527–552 (2002)

    Article  MATH  Google Scholar 

  25. Park, H., Pan, X., Lee, C., Choi, J.-I.: A pre-conditioned implicit direct forcing based immersed boundary method for incompressible viscous flows. J. Comput. Phys. 314, 774–799 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pinelli, A., Naqavi, I., Piomelli, U., Favier, J.: Immersed-boundary methods for general finite-difference and finite-volume Navier–Stokes solvers. J. Comput. Phys. 229(24), 9073–9091 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Roma, A.M., Peskin, C.S., Berger, M.J.: An adaptive version of the immersed boundary method. J. Comput. Phys. 153(2), 509–534 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schwarz, S., Kempe, T., Fröhlich, J.: A temporal discretization scheme to compute the motion of light particles in viscous flows by an immersed boundary method. J. Comput. Phys. 281, 591–613 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sotiropoulos, F., Yang, X.: Immersed boundary methods for simulating fluid–structure interaction. Prog. Aerosp. Sci. 65, 1–21 (2014)

    Article  Google Scholar 

  31. Taira, K., Colonius, T.: The immersed boundary method: a projection approach. J. Comput. Phys. 225(2), 2118–2137 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. ten Cate, A., Nieuwstad, C.H., Derksen, J.J., van den Akker, H.E.A.: Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity. Phys. Fluids 14(11), 4012 (2002)

    Article  MATH  Google Scholar 

  33. Topin, V., Dubois, F., Monerie, Y., Perales, F., Wachs, A.: Micro-rheology of dense particulate flows: application to immersed avalanches. J. Non-Newton. Fluid Mech. 166(1–2), 63–72 (2011)

    Article  MATH  Google Scholar 

  34. Tschisgale, S., Kempe, T., Fröhlich, J.: A new approach to define a non-iterative immersed boundary method for spherical particles of arbitrary density ratio. J. Comput. Phys. 339, 432–452 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Uhlmann, M.: An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209(2), 448–476 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Uhlmann, M.: Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime. Phys. Fluids 20(5), 53305 (2008)

    Article  MATH  Google Scholar 

  37. Wan, D., Turek, S.: An efficient multigrid-FEM method for the simulation of solid–liquid two phase flows. J. Comput. Appl. Math. 203(2), 561–580 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, H., Chessa, J., Liu, W.K., Belytschko, T.: The immersed/fictitious element method for fluid-structure interaction: volumetric consistency, compressibility and thin members. Int. J. Numer. Methods Eng. 74(1), 32–55 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, Z., Fan, J., Luo, K.: Combined multi-direct forcing and immersed boundary method for simulating flows with moving particles. Int. J. Multiphase Flow 34(3), 283–302 (2008)

    Article  Google Scholar 

  40. Xiao, C.N., Denner, F., van Wachem, B.G.: Fully-coupled pressure-based finite-volume framework for the simulation of fluid flows at all speeds in complex geometries. J. Comput. Phys. 346, 91–130 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang, J., Preidikman, S., Balaras, E.: A strongly coupled, embedded-boundary method for fluid–structure interactions of elastically mounted rigid bodies. J. Fluids Struct. 24(2), 167–182 (2008)

    Article  Google Scholar 

  42. Yang, J., Stern, F.: A simple and efficient direct forcing immersed boundary framework for fluid–structure interactions. J. Comput. Phys. 231(15), 5029–5061 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yu, Z., Shao, X.: A direct-forcing fictitious domain method for particulate flows. J. Comput. Phys. 227(1), 292–314 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berend van Wachem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdol Azis, M.H., Evrard, F. & van Wachem, B. An immersed boundary method for flows with dense particle suspensions. Acta Mech 230, 485–515 (2019). https://doi.org/10.1007/s00707-018-2296-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2296-y

Navigation