Skip to main content
Log in

Size-dependent nonlinear vibration of functionally graded composite micro-beams reinforced by carbon nanotubes with piezoelectric layers in thermal environments

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Nonlinear free vibration characteristics of functionally graded (FG) composite micro-beams reinforced by carbon nanotubes (CNTs) with piezoelectric layers in thermal environment are investigated in this work. The uniform distribution and four nonuniform distribution types of the CNTs reinforcements are examined. The equations of motion are derived based on the Euler–Bernoulli beam theory with von Karman’s assumption, the nonlocal strain gradient theory and the Hamilton’s principle. The approximate nonlinear frequencies of FG-carbon nanotube-reinforced composite (CNTRC) micro-beams for simply supported and clamped–clamped boundary conditions are obtained by using two analytical methods including the equivalent linearization method and the energy balance method. The accuracy of the obtained results has been verified. The influences of the nonlocal parameter, material length scale parameter, geometric property of micro-beam, temperature change, applied voltage, distribution pattern and volume fraction of the CNTs on the nonlinear free vibration behaviors of the FG-CNTRC micro-beams are performed and discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lau, K.T., Hui, D.: The revolutionary creation of new advanced materials—carbon nanotube composites. Compos. B Eng. 33, 263–277 (2002)

    Article  Google Scholar 

  2. Soni, S.K., Thomas, B., Kar, V.R.: A comprehensive review on CNTs and CNT-reinforced composites: syntheses. Charac. Appl. Mater. Today Commun. 25, 101546 (2020)

    Article  Google Scholar 

  3. Fidelus, J.D., Wiesel, E., Gojny, F.H., Schulte, K., Wagner, H.D.: Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites. Compos. A Appl. Sci. Manuf. 36, 1555–1661 (2005)

    Article  Google Scholar 

  4. Spitalsky, Z., Tasis, D., Papagelis, K., Galiotis, C.: Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 35(3), 357–401 (2010)

    Article  Google Scholar 

  5. Coleman, J.N., Khan, U., Blau, W.J., Gun’ko, Y.K.: Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44, 1624–1652 (2006)

    Article  Google Scholar 

  6. Shen, H.S.: Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos. Struct. 91, 9–19 (2009)

    Article  Google Scholar 

  7. Rafiee, M., Yang, J., Kitipornchai, S.: Large amplitude vibration of carbon nanotube reinforced functionally graded composite beams with piezoelectric layers. Compos. Struct. 96, 716–725 (2013)

    Article  Google Scholar 

  8. Ke, L.L., Yang, J., Kitipornchai, S.: Nonlinear free vibration of functionally graded carbonnanotube-reinforced composite beams. Compos. Struct. 92, 676–683 (2010)

    Article  Google Scholar 

  9. Shen, H.S., Xiang, Y.: Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments. Eng. Struct. 56, 698–708 (2013)

    Article  Google Scholar 

  10. Khosravi, S., Arvin, H., Kiani, Y.: Vibration analysis of rotating composite beams reinforced with carbon nanotubes in thermal environment. Int. J. Mech. Sci. 164, 105187 (2019)

    Article  Google Scholar 

  11. Wattanasakulpong, N., Ungbhakorn, V.: Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation. Comput. Mater. Sci. 71, 201–208 (2013)

    Article  Google Scholar 

  12. Lin, F., Xiang, Y.: Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories. Appl. Math. Model. 38(15–16), 3741–3754 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Babaei, H., Kiani, Y., Eslami, M.R.: Vibrational behavior of thermally pre-/post-buckled FG-CNTRC beams on a nonlinear elastic foundation: a two-step perturbation technique. Acta Mech. 232, 3897–3915 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liew, K.M., Lei, Z.X., Zhang, L.W.: Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review. Compos. Struct. 120, 90–97 (2015)

    Article  Google Scholar 

  15. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  16. Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10(3), 233–248 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  18. Aifantis, E.C.: On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30, 1279–1299 (1992)

    Article  MATH  Google Scholar 

  19. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  20. Ke, L.L., Wang, Y.S.: Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory. Compos. Struct. 93, 342–350 (2011)

    Article  Google Scholar 

  21. Akgöz, B., Civalek, Ö.: A size-dependent shear deformation beam model based on the strain gradient elasticity theory. Int. J. Eng. Sci. 70, 1–14 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Akgöz, B., Civalek, Ö.: Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium. Int. J. Eng. Sci. 85, 90–104 (2014)

    Article  Google Scholar 

  23. Akgöz, B., Civalek, Ö.: A novel microstructure-dependent shear deformable beam model. Int. J. Mech. Sci. 99, 10–20 (2015)

    Article  MATH  Google Scholar 

  24. Demir, C., Civalek, Ö.: On the analysis of microbeams. Int. J. Eng. Sci. 121, 14–33 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nazemizadeh, M., Bakhtiari-Nejad, F., Assadi, A., et al.: Nonlinear vibration of piezoelectric laminated nanobeams at higher modes based on nonlocal piezoelectric theory. Acta Mech. 231, 4259–4274 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Benhamed, M., Abouelregal, A.: Influence of temperature pulse on a nickel microbeams under couple stress theory. J. Appl. Comput. Mech. 6(4), 777–787 (2020)

    Google Scholar 

  27. Abouelregal, A.E., Mohammad-Sedighi, H., Faghidian, S.A., Shirazi, A.H.: Temperature-dependent physical characteristics of the rotating nonlocal nanobeams subject to a varying heat source and a dynamic load. Facta Univ. Ser. Mech. Eng. 19(4), 633–656 (2020)

    Google Scholar 

  28. Akgöz, B., Civalek, Ö.: Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory. Acta Astronaut. 119, 1–12 (2016)

    Article  Google Scholar 

  29. Civalek, Ö., Uzun, B., Yaylı, M.Ö., et al.: Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method. Eur. Phys. J. Plus 135, 381 (2020)

    Article  Google Scholar 

  30. Sedighi, H.M.: Divergence and flutter instability of magneto-thermo-elastic C-BN hetero-nanotubes conveying fluid. Acta. Mech. Sin. 36(2), 381–396 (2020)

    Article  MathSciNet  Google Scholar 

  31. Numanoğlu, H.M., Akgöz, B., Civalek, Ö.: On dynamic analysis of nanorods. Int. J. Eng. Sci. 130, 33–50 (2018)

    Article  Google Scholar 

  32. Borjalilou, V., Taati, E., Ahmadian, M.T.: Bending, buckling and free vibration of nonlocal FG-carbon nanotube-reinforced composite nanobeams: exact solutions. SN Appl. Sci. 1, 1323 (2019)

    Article  Google Scholar 

  33. Mohammadimehr, M., Monajemi, A.A., Afshari, H.: Free and forced vibration analysis of viscoelastic damped FG-CNT reinforced micro composite beams. Microsyst. Technol. 26, 3085–3099 (2020)

    Article  Google Scholar 

  34. Allahkarami, F., Nikkhah-bahrami, M., Saryazdi, M.G.: Magneto-thermo-mechanical dynamic buckling analysis of a FG-CNTs-reinforced curved microbeam with different boundary conditions using strain gradient theory. Int. J. Mech. Mater. Des. 14, 243–261 (2018)

    Article  Google Scholar 

  35. Ahmadi, M., Ansari, R., Rouhi, H.: On the free vibrations of piezoelectric carbon nanotube-reinforced microbeams: a multiscale finite element approach. Iran. J. Sci. Technol. Trans. Mech. Eng. 43, 285–294 (2019)

    Article  Google Scholar 

  36. Rostami, R., Mohammadimehr, M., Ghannad, M., Jalali, A.: Forced vibration analysis of nano-composite rotating pressurized microbeam reinforced by CNTs based on MCST with temperature-variable material properties. Theor. Appl. Mech. Lett. 8, 97–108 (2018)

    Article  Google Scholar 

  37. Pourasghar, A., Chen, Z.: Effect of hyperbolic heat conduction on the linear and nonlinear vibration of CNT reinforced size-dependent functionally graded microbeams. Int. J. Eng. Sci. 137, 57–72 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Civalek, Ö., Dastjerdi, S., Akbaş, ŞD., Akgöz, B.: Vibration analysis of carbon nanotube-reinforced composite micro-beams. Math. Methods Appl. Sci. (2021). https://doi.org/10.1002/mma.7069

    Article  Google Scholar 

  39. Lim, C.W., Zhang, G., Reddy, J.N.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Şimşek, M.: Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach. Int. J. Eng. Sci. 105, 12–27 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lu, L., Guo, X., Zhao, J.: Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory. Int. J. Eng. Sci. 116, 12–24 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Dang, V.H., Nguyen, D.A., Le, M.Q., et al.: Nonlinear vibration of nanobeams under electrostatic force based on the nonlocal strain gradient theory. Int. J. Mech. Mater. Des. 16, 289–308 (2020)

    Article  Google Scholar 

  43. Thang, P.T., Nguyen, T.T., Lee, J.: Modeling and analysis of bi-directional functionally graded nanobeams based on nonlocal strain gradient theory. Appl. Math. Comput. 407, 126303 (2021)

    MathSciNet  MATH  Google Scholar 

  44. Karami, B., Janghorban, M., Rabczuk, T.: Dynamics of two-dimensional functionally graded tapered Timoshenko nanobeam in thermal environment using nonlocal strain gradient theory. Compos. B Eng. 182, 107622 (2020)

    Article  Google Scholar 

  45. Liu, H., Lv, Z., Wu, H.: Nonlinear free vibration of geometrically imperfect functionally graded sandwich nanobeams based on nonlocal strain gradient theory. Compos. Struct. 214, 47–61 (2019)

    Article  Google Scholar 

  46. Chu, L., Dui, G., Zheng, Y.: Thermally induced nonlinear dynamic analysis of temperature-dependent functionally graded flexoelectric nanobeams based on nonlocal simplified strain gradient elasticity theory. Eur. J. Mech. A. Solids 82, 103999 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  47. Hieu, D.V., Hoa, N.T., Duy, L.Q., Kim Thoa, N.T.: Nonlinear vibration of an electrostatically actuated functionally graded microbeam under longitudinal magnetic field. J. Appl. Comput. Mech. 7(3), 1537–1549 (2021)

    Google Scholar 

  48. Yang, W.D., Fang, C.Q., Wang, X.: Nonlinear dynamic characteristics of FGCNTs reinforced microbeam with piezoelectric layer based on unifying stress-strain gradient framework. Compos. B Eng. 111, 372–386 (2017)

    Article  Google Scholar 

  49. Shenas, A.G., Ziaee, S., Malekzadeh, P.: A unified higher-order beam theory for free vibration and buckling of FGCNT-reinforced microbeams embedded in elastic medium based on unifying stress-strain gradient framework. Iran. J. Sci. Technol. Trans. Mech. Eng. 43, 469–492 (2019)

    Article  Google Scholar 

  50. Talebizadehsardari, P., Eyvazian, A., Asmael, M., Karami, B., Shahsavari, D., Mahani, R.B.: Static bending analysis of functionally graded polymer composite curved beams reinforced with carbon nanotubes. Thin Walled Struct. 157, 107139 (2020)

    Article  Google Scholar 

  51. Esen, I., Daikh, A.A., Eltaher, M.A.: Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load. Eur. Phys. J. Plus 136, 458 (2021)

    Article  Google Scholar 

  52. Thai, C.H., Ferreira, A.J.M., Rabczuk, T., Nguyen-Xuan, H.: Size-dependent analysis of FG-CNTRC microplates based on modified strain gradient elasticity theory. Eur. J. Mech. A. Solids 72, 521–538 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  53. Farzam, A., Hassani, B.: Thermal and mechanical buckling analysis of FG carbon nanotube reinforced composite plates using modified couple stress theory and isogeometric approach. Compos. Struct. 206, 774–790 (2018)

    Article  Google Scholar 

  54. Thai, C.H., Tran, T.D., Phung-Van, P.: A size-dependent moving Kriging meshfree model for deformation and free vibration analysis of functionally graded carbon nanotube-reinforced composite nanoplates. Eng. Anal. Bound. Elem. 115, 52–63 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  55. Daikh, A.A., Houari, M.S.A., Belarbi, M.O., Mohamed, S.A., Eltaher, M.A.: Static and dynamic stability responses of multilayer functionally graded carbon nanotubes reinforced composite nanoplates via quasi 3D nonlocal strain gradient theory. Defence Technology, Available online 20 September 2021 (2021).

  56. Thang, P.T., Tran, P., Nguyen-Thoi, T.: Applying nonlocal strain gradient theory to size-dependent analysis of functionally graded carbon nanotube-reinforced composite nanoplates. Appl. Math. Model. 93, 775–791 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  57. Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications. Comput. Methods Appl. Mech. Eng. 362, 112790 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  58. Guo, H., Zhuang, X., Rabczuk, T.: A deep collocation method for the bending analysis of Kirchhoff plate. Comput. Mater. Continua 59(2), 433–456 (2019)

    Article  Google Scholar 

  59. Zhuang, X., Guo, H., Alajlan, N., Zhu, H., Rabczuk, T.: Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning. Eur. J. Mech. A Solids 87, 104225 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  60. Msekh, M.A., Cuong, N.H., Zi, G., Areias, P., Zhuang, X., Rabczuk, T.: Fracture properties prediction of clay/epoxy nanocomposites with interphase zones using a phase field model. Eng. Fract. Mech. 188, 287–299 (2018)

    Article  Google Scholar 

  61. Talebi, H., Silani, M., Bordas, S.P.A., Kerfriden, P., Rabczuk, T.: A computational library for multiscale modeling of material failure. Comput. Mech. 53, 1047–1071 (2014)

    Article  MathSciNet  Google Scholar 

  62. Bayat, M., Pakar, I., Domairry, G.: Recent developments of some asymptotic methods and their applications for nonlinear vibration equations in engineering problems: a review. Latin Am. J. Solids Struct. 9(2), 145–234 (2012)

    Article  Google Scholar 

  63. He, J.H.: Preliminary report on the energy balance for nonlinear oscillations. Mech. Res. Commun. 29, 107–111 (2002)

    Article  MATH  Google Scholar 

  64. Anh, N.D.: Dual approach to averaged values of functions: a form for weighting coefficient. Vietnam J. Mech. 37(2), 145–150 (2015)

    Article  Google Scholar 

  65. Anh, N.D., Hai, N.Q., Hieu, D.V.: The equivalent linearization method with a weighted averaging for analyzing of nonlinear vibrating systems. Latin Am. J. Solids Struct. 14(9), 1723–1740 (2017)

    Article  Google Scholar 

  66. Hieu, D.V.: A new approximate solution for a generalized nonlinear oscillator. Int. J. Appl. Comput. Math. 5, 126 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  67. Dehrouyeh-Semnani, A.M., Nikkhah-Bahrami, M.: A discussion on evaluation of material length scale parameter based on microcantilever test. Compos. Struct. 122, 425–429 (2015)

    Article  Google Scholar 

  68. Arash, B., Ansari, R.: Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain. Physica E 42, 2058–2064 (2010)

    Article  Google Scholar 

  69. Arda, M.: Evaluation of optimum length scale parameters in longitudinal wave propagation on nonlocal strain gradient carbon nanotubes by lattice dynamics. Mech. Based Des. Struct. Mach. (2020). https://doi.org/10.1080/15397734.2020.1835488

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by University of Transport Technology (UTT) under Grant Number ĐTTĐUTT2021-20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dang Van Hieu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gia Phi, B., Van Hieu, D., Sedighi, H.M. et al. Size-dependent nonlinear vibration of functionally graded composite micro-beams reinforced by carbon nanotubes with piezoelectric layers in thermal environments. Acta Mech 233, 2249–2270 (2022). https://doi.org/10.1007/s00707-022-03224-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03224-4

Navigation