Skip to main content
Log in

Critical velocities of anisotropic tubes under a moving pressure incorporating transverse shear and rotary inertia effects

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Closed-form expressions for critical velocities and middle-surface displacements of anisotropic tubes subjected to a uniform internal pressure moving at a constant speed are derived using a first-order shear deformation (FSD) model for axisymmetric orthotropic cylindrical shells. The FSD shell model is first formulated employing a variational method based on Hamilton’s principle, which incorporates both the transverse shear and rotary inertia effects. The general 3-D constitutive relations for orthotropic elastic materials are utilized to describe the tube anisotropy, which enables a unified treatment of orthotropic, transversely isotropic, cubic and isotropic tubes representing various composite and metallic cylindrical shells. Closed-form formulas for four critical velocities of the anisotropic tube are derived for the general case with the transverse shear, rotary inertia and radial stress effects, which divide the range of the pressure velocity into four segments. For each of these segments, closed-form expressions for the mid-surface radial displacement are obtained. By suppressing the transverse shear, rotary inertia or radial stress effect, the general formulas are reduced to those for special cases. In particular, when the transverse shear, rotary inertia and radial stress effects are all neglected, the newly derived critical velocity formulas for orthotropic and isotropic tubes recover the two existing ones for thin tubes. To quantitatively illustrate the new model, a numerical example is provided for an isotropic tube, where eight values of the lowest critical velocity are directly determined using newly derived formulas and compared with an existing value computationally obtained by others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Ai, L., Gao, X.-L.: Micromechanical modeling of 3-D printable interpenetrating phase composites with tailorable effective elastic properties including negative Poisson’s ratio. J. Micromech. Mol. Phys. 2,1750015-1–1750015-21 (2017)

    Article  Google Scholar 

  2. Bert, C.W., Birman, V.: Parametric instability of thick, orthotropic, circular cylindrical shells. Acta Mech. 71, 61–76 (1988)

    Article  MATH  Google Scholar 

  3. Bigoni, D., Gourgiotis, P.A.: Folding and faulting of an elastic continuum. Proc. R. Soc. A 472, 20160018-1–20160018-22 (2016)

    Article  MATH  Google Scholar 

  4. Bower, A.F.: Applied Mechanics of Solids. CRC Press, Boca Raton, FL (2009)

    Book  Google Scholar 

  5. Cao, R., Li, L., Li, X., Mi, C.: On the frictional receding contact between a graded layer and an orthotropic substrate indented by a rigid flat-ended stamp. Mech. Mater. 158, 103847-1–103847-13 (2021)

    Article  Google Scholar 

  6. Eipakchi, H., Nasrekani, F.M.: Vibrational behavior of composite cylindrical shells with auxetic honeycombs core layer subjected to a moving pressure. Compos. Struct. 254, 112847-1–112847-12 (2020)

    Article  Google Scholar 

  7. Eipakchi, H., Nasrekani, F.M., Ahmadi, S.: An analytical approach for the vibration behavior of viscoelastic cylindrical shells under internal moving pressure. Acta Mech. 231, 3405–3418 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gao, R.Z., Zhang, G.Y., Ioppolo, T., Gao, X.-L.: Elastic wave propagation in a periodic composite beam structure: a new model for band gaps incorporating surface energy, transverse shear and rotational inertia effects. J. Micromech. Mol. Phys. 3, 1840005-1–1840005-22 (2018)

    Article  Google Scholar 

  9. Gao, X.-L.: Two displacement methods for in-plane deformations of orthotropic linear elastic materials. Z. Angew. Math. Phys. 52, 810–822 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gao, X.-L.: A new Timoshenko beam model incorporating microstructure and surface energy effects. Acta Mech. 226, 457–474 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gao, X.-L., Huang, J.X., Reddy, J.N.: A non-classical third-order shear deformation plate model based on a modified couple stress theory. Acta Mech. 224, 2699–2718 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gao, X.-L., Littlefield, A.G.: Critical velocities and displacements of anisotropic tubes under a moving pressure. Math. Mech. Solids. (2022). https://doi.org/10.1177/10812865221077454

    Article  Google Scholar 

  13. Gao, X.-L., Mall, S.: Variational solution for a cracked mosaic model of woven fabric composites. Int. J. Solids Struct. 38, 855–874 (2001)

    Article  MATH  Google Scholar 

  14. Gao, X.-L., Mao, C.L.: Solution of the contact problem of a rigid conical frustum indenting a transversely isotropic elastic half-space. ASME J. Appl. Mech. 81, 041007-1–041007-12 (2014)

    Article  Google Scholar 

  15. Gao, X.-L., Zhang, G.Y.: A non-classical Kirchhoff plate model incorporating microstructure, surface energy and foundation effects. Continuum Mech. Thermodyn. 28, 195–213 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gao, X.-L., Zhang, G.Y.: A non-classical Mindlin plate model incorporating microstructure, surface energy and foundation effects. Proc. R. Soc. A 472, 20160275-1-20160275–25 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Herrmann, G., Mirsky, I.: Three-dimensional and shell theory analysis of axially symmetric motions of cylinders. ASME J. Appl. Mech. 23, 563–568 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jones, J.P., Bhuta, P.G.: Response of cylindrical shells to moving loads. ASME J. Appl. Mech. 31, 105–111 (1964)

    Article  Google Scholar 

  19. Jones, N., De Oliveira, J.G.: Impulsive loading of a cylindrical shell with transverse shear and rotatory inertia. Int. J. Solids Struct. 19, 263–279 (1983)

    Article  MATH  Google Scholar 

  20. Labuschagne, A., van Rensburg, N.F.J., van der Merwe, A.J.: Comparison of linear beam theories. Math. Comput. Modell. 49, 20–30 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Leissa, A.W.: Vibration of Shells, NASA SP-288, Scientific and Technical Information Office, National Aeronautics and Space Administration, Washington, DC (1973)

  22. Lin, T.C., Morgan, G.W.: A study of axisymmetric vibrations of cylindrical shells as affected by rotary inertia and transverse shear. ASME J. Appl. Mech. 23, 255–261 (1956)

    Article  MATH  Google Scholar 

  23. Littlefield, A.G., Hyland, E.J., Andalora, A., Klein, N., Langone, R., Becker, R.: Carbon fiber/thermoplastic overwrapped gun tube. ASME J. Pres. Ves. Tech. 128, 257–262 (2006)

    Article  Google Scholar 

  24. Littlefield, A.G., Hyland, E.J.: 120 mm prestressed carbon fiber/thermoplastic overwrapped gun tubes. ASME J. Pres. Ves. Tech. 134, 041008-1–041008-9 (2012)

    Article  Google Scholar 

  25. Liu, Y., Soh, C.-K.: Shear correction for Mindlin type plate and shell elements. Int. J. Numer. Meth. Eng. 69, 2789–2806 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ma, H.M., Gao, X.-L., Reddy, J.N.: A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 220, 217–235 (2011)

    Article  MATH  Google Scholar 

  27. Mirsky, I.: Axisymmetric vibrations of orthotropic cylinders. J. Acoust. Soc. Am. 36, 2106–2112 (1964)

    Article  MathSciNet  Google Scholar 

  28. Mirsky, I., Herrmann, G.: Axially symmetric motions of thick cylindrical shells. ASME J. Appl. Mech. 25, 97–102 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  29. Naghdi, P.M., Cooper, R.M.: Propagation of elastic waves in cylindrical shells, including the effects of transverse shear and rotatory inertia. J. Acoust. Soc. Am. 28, 56–63 (1956)

    Article  Google Scholar 

  30. Nechitailo, N.V., Lewis, K.B.: Critical velocity for rails in hypervelocity launchers. Int. J. Impact Eng. 33, 485–495 (2006)

    Article  Google Scholar 

  31. Nickalls, R.W.D.: Viète, Descartes and the cubic equation. Math. Gaz. 90(518), 203–208 (2006)

    Article  Google Scholar 

  32. Okereke, O.E., Iwueze, I.S., Ohakwe, J.: Some contributions to the solution of cubic equations. Br. J. Math. Comp. Sci. 4, 2929–2941 (2014)

    Article  Google Scholar 

  33. Okoli, O.C., Laisin, M., Nsiegbe, N.A., Eze, A.C.: Method of solution to cubic equation, COOU. J. Phys. Sci. 3, 515–521 (2020)

    Google Scholar 

  34. Prisekin, V.L.: The stability of a cylindrical shell subjected to a moving load. Mekhanika i Mashinostroenie 5, 133–134 (1961)

    Google Scholar 

  35. Reddy, J.N.: Energy Principles and Variational Methods in Applied Mechanics, 2nd edn. Wiley, Hoboken, NJ (2002)

    Google Scholar 

  36. Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells, 2nd edn. CRC Press, Boca Raton, FL (2007)

    Google Scholar 

  37. Ruzzene, M., Baz, A.: Dynamic stability of periodic shells with moving loads. J. Sound Vib. 296, 830–844 (2006)

    Article  Google Scholar 

  38. Simkins, T.E.: Dynamic strains in an orthotropically-wrapped gun tube Part I—Theoretical, Technical Report ARCCB-TR-93026, U.S. Army Armament Research, Development and Engineering Center, Benét Laboratories, Watervliet, NY (1993)

  39. Simkins, T.E.: Amplification of flexural waves in gun tubes. J. Sound Vib. 172, 145–154 (1994)

    Article  MATH  Google Scholar 

  40. Simkins, T.E.: The influence of transient flexural waves on dynamic strains in cylinders. ASME J. Appl. Mech. 62, 262–265 (1995)

    Article  Google Scholar 

  41. Simkins, T.E., Pflegl, G.A., Stilson, E.G.: Dynamic strains in a 60 mm gun tube: an experimental study. J. Sound Vib. 168, 549–557 (1993)

    Article  Google Scholar 

  42. Soedel, W.: On the vibration of shells with Timoshenko-Mindlin type shear deflections and rotatory inertia. J. Sound Vib. 83, 67–79 (1982)

    Article  MATH  Google Scholar 

  43. Sofiyev, A.H.: Dynamic response of an FGM cylindrical shell under moving loads. Compos. Struct. 93, 58–66 (2010)

    Article  Google Scholar 

  44. Steigmann, D.J.: Finite Elasticity Theory. Oxford University Press, Oxford, England (2017)

    Book  MATH  Google Scholar 

  45. Stephen, N.G.: Mindlin plate theory: best shear coefficient and higher spectra validity. J Sound Vib. 202, 539–553 (1997)

    Article  Google Scholar 

  46. Tang, S.-C.: Dynamic response of a tube under moving pressure. J. Eng. Mech. Div. 91(5), 97–122 (1965)

    Article  Google Scholar 

  47. Tzeng, J.T., Hopkins, D.A.: Dynamic response of composite cylinders subjected to a moving internal pressure. J. Reinf. Plas. Compos. 15, 1088–1105 (1996)

    Article  Google Scholar 

  48. Zhang, G.Y., Gao, X.-L.: A non-classical model for first-order shear deformation circular cylindrical thin shells incorporating microstructure and surface energy effects. Math. Mech. Solids 26, 1294–1319 (2021)

    Article  MathSciNet  Google Scholar 

  49. Zhang, G.Y., Gao, X.-L., Bishop, J.E., Fang, H.E.: Band gaps for elastic wave propagation in a periodic composite beam structure incorporating microstructure and surface energy effects. Compos. Struct. 189, 263–272 (2018)

    Article  Google Scholar 

  50. Zhang, G.Y., Gao, X.-L., Guo, Z.Y.: A non-classical model for an orthotropic Kirchhoff plate embedded in a viscoelastic medium. Acta Mech. 228, 3811–3825 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhang, G.Y., Gao, X.-L., Littlefield, A.G.: A non-classical model for circular cylindrical thin shells incorporating microstructure and surface energy effects. Acta Mech. 232, 2225–2248 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhang, G.Y., Qu, Y.L., Gao, X.-L., Jin, F.: A transversely isotropic magneto-electro-elastic Timoshenko beam model incorporating microstructure and foundation effects. Mech. Mater. 149, 103412-1–103412-13 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. Shaofan Li of University of California-Berkeley and two anonymous reviewers for their encouragement and helpful comments on an earlier version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X.-L. Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The derivation of Eq. (23) from Eqs. (22b) and (22c) is provided here.

From Eq. (22b), it follows that

$$ \frac{{\partial \psi_{x} }}{\partial x} = \frac{2}{{hk_{s} C_{55} }}\left[ {\rho h\ddot{w} - f_{z} + \frac{h}{R}\left( {C_{12} \frac{\partial u}{{\partial x}} + \frac{{C_{22} }}{R}w} \right)} \right] - \frac{{\partial^{2} w}}{{\partial x^{2} }}. $$
(A.1)

Taking the derivative with respective to x on both sides of Eq. (22c) gives

$$ \frac{{h^{3} C_{11} }}{12}\frac{{\partial^{3} \psi_{x} }}{{\partial x^{3} }} - \frac{{hk_{s} C_{55} }}{2}\left( {\frac{{\partial^{2} w}}{{\partial x^{2} }} + \frac{{\partial \psi_{x} }}{\partial x}} \right) = \frac{{\rho h^{3} }}{12}\frac{{\partial^{3} \psi_{x} }}{{\partial x\partial t^{2} }}. $$
(A.2)

Substituting Eq. (A.1) into Eq. (A.2) yields

$$ \begin{gathered} \frac{{h^{3} C_{11} }}{12}\left\{ {\frac{2}{{hk_{s} C_{55} }}\left[ {\rho h\frac{{\partial^{4} w}}{{\partial x^{2} \partial t^{2} }} - \frac{{\partial^{2} f_{z} }}{{\partial x^{2} }} + \frac{h}{R}\left( {C_{12} \frac{{\partial^{3} u}}{{\partial x^{3} }} + \frac{{C_{22} }}{R}\frac{{\partial^{2} w}}{{\partial x^{2} }}} \right)} \right] - \frac{{\partial^{4} w}}{{\partial x^{4} }}} \right\} \hfill \\ \,\,\,\, - \left[ {\rho h\frac{{\partial^{2} w}}{{\partial t^{2} }} - f_{z} + \frac{h}{R}\left( {C_{12} \frac{\partial u}{{\partial x}} + \frac{{C_{22} }}{R}w} \right)} \right] \hfill \\ = \frac{{\rho h^{3} }}{12}\left\{ {\frac{2}{{hk_{s} C_{55} }}\left[ {\rho h\frac{{\partial^{4} w}}{{\partial t^{4} }} - \frac{{\partial^{2} f_{z} }}{{\partial t^{2} }} + \frac{h}{R}\left( {C_{12} \frac{{\partial^{3} u}}{{\partial x\partial t^{2} }} + \frac{{C_{22} }}{R}\frac{{\partial^{2} w}}{{\partial t^{2} }}} \right)} \right] - \frac{{\partial^{4} w}}{{\partial x^{2} \partial t^{2} }}} \right\}. \hfill \\ \end{gathered} $$
(A.3)

Rewriting Eq. (A.3) in descending order of spatial derivatives then leads to

$$ \begin{gathered} \frac{{h^{3} C_{11} }}{12}\frac{{\partial^{4} w}}{{\partial x^{4} }} - \frac{{C_{11} C_{22} }}{{6k_{s} C_{55} }}\frac{{h^{3} }}{{R^{2} }}\frac{{\partial^{2} w}}{{\partial x^{2} }} + \frac{{hC_{22} }}{{R^{2} }}w - \frac{{h^{3} C_{11} C_{12} }}{{6Rk_{s} C_{55} }}\frac{{\partial^{3} u}}{{\partial x^{3} }} + \frac{{hC_{12} }}{R}\frac{\partial u}{{\partial x}} + \frac{{h^{2} C_{11} }}{{6k_{s} C_{55} }}\frac{{\partial^{2} f_{z} }}{{\partial x^{2} }} - f_{z} \hfill \\ = \frac{{\rho h^{3} }}{12}\left( {1 + \frac{{2C_{11} }}{{k_{s} C_{55} }}} \right)\frac{{\partial^{4} w}}{{\partial x^{2} \partial t^{2} }} - \rho h\left( {1 + \frac{{h^{2} C_{22} }}{{6R^{2} k_{s} C_{55} }}} \right)\frac{{\partial^{2} w}}{{\partial t^{2} }} - \frac{{\rho^{2} h^{3} }}{{6k_{s} C_{55} }}\frac{{\partial^{4} w}}{{\partial t^{4} }} - \frac{{\rho h^{3} C_{12} }}{{6Rk_{s} C_{55} }}\frac{{\partial^{3} u}}{{\partial x\partial t^{2} }} + \frac{{\rho h^{2} }}{{6k_{s} C_{55} }}\frac{{\partial^{2} f_{z} }}{{\partial t^{2} }}, \hfill \\ \end{gathered} $$
(A.4)

which is what is given in Eq. (23), thereby completing the derivation.

Appendix B

It is shown here that after the determination of Vcr0Vcr3 and w in Sect. 3, all of the displacement, strain and stress components in the tube can be readily obtained.

With w determined, the middle-surface x-displacement component u can be found from Eq. (29) by direct integration.

After both w and u are obtained, the rotation angle ψx can be solved from Eq. (22b).

With u, w and ψx known, the displacement field in the axisymmetric cylindrical shell (tube) can be fully determined from Eqs. (1a–c) as

$$ u_{x} (x,z,t) = u(x,t) + z\psi_{x} (x,t),\,\,\,\,u_{\theta } (x,z,t) = 0,\,\,\,\,u_{z} (x,z,t) = w(x,t). $$
(B.1)

From Eqs. (4) and (B.1), the strain components can then be obtained as

$$ \begin{gathered} \varepsilon_{xx} = \frac{\partial u}{{\partial x}} + z\frac{{\partial \psi_{x} }}{\partial x},\,\,\,\,\varepsilon_{\theta \theta } = \frac{w}{r},\,\,\varepsilon_{zz} = 0, \hfill \\ \varepsilon_{zx} = \frac{1}{2}\left( {\frac{\partial w}{{\partial x}} + \psi_{x} } \right) = \varepsilon_{xz} ,\,\,\,\,\varepsilon_{\theta z} = 0 = \varepsilon_{z\theta } ,\,\,\,\,\varepsilon_{x\theta } = 0 = \varepsilon_{\theta x} . \hfill \\ \end{gathered} $$
(B.2)

Finally, using Eq. (B.2) in Eq. (5) yields the stress components in the tube as

$$ \begin{gathered} \sigma_{xx} = C_{11} \left( {\frac{\partial u}{{\partial x}} + z\frac{{\partial \psi_{x} }}{\partial x}} \right) + C_{12} \frac{w}{r},\,\,\,\,\sigma_{\theta \theta } = C_{12} \left( {\frac{\partial u}{{\partial x}} + z\frac{{\partial \psi_{x} }}{\partial x}} \right) + C_{22} \frac{w}{r}, \hfill \\ \sigma_{zz} = C_{13} \left( {\frac{\partial u}{{\partial x}} + z\frac{{\partial \psi_{x} }}{\partial x}} \right) + C_{23} \frac{w}{r},\,\,\,\,\sigma_{zx} = \frac{1}{2}C_{55} \left( {\frac{\partial w}{{\partial x}} + \psi_{x} } \right) = \sigma_{xz} , \hfill \\ \sigma_{\theta z} = 0 = \sigma_{z\theta } ,\,\,\,\,\sigma_{x\theta } = 0 = \sigma_{\theta x} . \hfill \\ \end{gathered} $$
(B.3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, XL. Critical velocities of anisotropic tubes under a moving pressure incorporating transverse shear and rotary inertia effects. Acta Mech 233, 3511–3534 (2022). https://doi.org/10.1007/s00707-022-03284-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03284-6

Navigation