Skip to main content

Advertisement

Log in

The rhizobacterium Arthrobacter agilis produces dimethylhexadecylamine, a compound that inhibits growth of phytopathogenic fungi in vitro

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Plant diseases caused by fungal pathogens such as Botrytis cinerea and the oomycete Phytophthora cinnamomi affect agricultural production worldwide. Control of these pests can be done by the use of fungicides such as captan, which may have deleterious effects on human health. This study demonstrates that the rhizobacterium Arthrobacter agilis UMCV2 produces volatile organic compounds that inhibit the growth of B. cinerea in vitro. A single compound from the volatile blends, namely dimethylhexadecylamine (DMHDA), could inhibit the growth of both B. cinerea and P. cinnamomi when supplied to the growth medium in low concentrations. DMHDA also inhibited the growth of beneficial fungi Trichoderma virens and Trichoderma atroviride but at much higher concentrations. DMHDA-related aminolipids containing 4, 8, 10, 12, and 14 carbons in the alkyl chain were tested for their inhibitory effect on the growth of the pathogens. The results show that the most active compound from those tested was dimethyldodecylamine. This effect correlates with a decrease in the number of membrane lipids present in the mycelium of the pathogen including eicosanoic acid, (Z)-9-hexadecenoic acid, methyl ester, and (Z)-9-octadecenoic acid, methyl ester. Strawberry leaflets treated with DMHDA were not injured by the compound. These data indicate that DMHDA and related compounds, which can be produced by microorganisms may effectively inhibit the proliferation of certain plant pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arce GT, Gordon EB, Cohen SM, Singh P (2010) Genetic toxicology of folpet and captan. Crit Rev Toxicol 40:546–574. doi:10.3109/10408444.2010.481663

    Article  PubMed  CAS  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486. doi:10.1016/j.tplants.2012.04.001

    Article  PubMed  CAS  Google Scholar 

  • Bondada BR, Sams CE, Deyton DE, Cummins JC (2007) Oil emulsions enhance transcuticular movement of captan in apple leaves. Crop Prot 26:691–696. doi:10.1016/j.cropro.2006.06.007

    Article  CAS  Google Scholar 

  • Bruce A, Verrall S, Hackett CA, Wheatley RE (2004) Identification of volatile organic compounds (VOCs) from bacteria and yeast causing growth inhibition of sapstain fungi. Holzforschung 58:193–198. doi:10.1515/HF.2004.029

    Article  CAS  Google Scholar 

  • Burkhardt S, Tan DX, Manchester LC, Hardeland R, Reiter RJ (2001) Detection and quantification of the antioxidant melatonin in montmorency and balaton tart cherries (Prunus cerasus). J Agric Food Chem 49:4898–4902. doi:10.1021/jf010321+

    Article  PubMed  CAS  Google Scholar 

  • Cohen SM, Gordo EB, Singh P, Arce GT, Nyska A (2010) Carcinogenic mode of action of folpet in mice and evaluation of its relevance to humans. Crit Rev Toxicol 40:531–545. doi:10.3109/10408441003742903

    Article  PubMed  CAS  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez LI, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592. doi:10.1104/pp. 108.130369

    Article  PubMed  CAS  Google Scholar 

  • Damian-Badillo LM, Martínez-Muñóz RS, Salgado-Garciglia R, Martínez-Pacheco MM (2010) In vitro actioomycete activity of Artemisia ludoviciana extracts against Phytophtora spp. Bol Latinoam Caribe 9:136–142

    Google Scholar 

  • Elad Y, Williamson B, Tudzynski P, Delen N (2007) Botrytis spp. and diseases they cause in agricultural systems—an introduction. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Springer, Dordrecht, pp 1–8. doi:10.1007/978-1-4020-2626-3_1

    Chapter  Google Scholar 

  • Finotti E, Moretto D, Marsella R, Mercantini R (1993) Temperature effects and fatty acid patterns in Geomyces species isolated from antarctic soil. Polar Biol 13:127–130. doi:10.1007/BF00238545

    Article  Google Scholar 

  • González-Gómez D, Lozano M, Fernández-León MF, Ayuso MC, Bernalte MJ, Rodríguez AB (2009) Detection and quantification of melatonin and serotonin in eight sweet cherry cultivars (Prunus avium L.). Eur Food Res Technol 229:223–229. doi:10.1007/s00217-009-1042-z

    Article  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153. doi:10.1146/annurev.phyto.41.052002.095656

    Article  PubMed  CAS  Google Scholar 

  • Howell C (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10. doi:10.1094/PDIS.2003.87.1.4

    Article  Google Scholar 

  • Jõno K, Takayama T, Kuno M, Higashide E (1986) Effect of alkyl chain length of benzalkonium chloride on the bactericidal activity and binding to organic materials. Chem Pharm Bul 34:4215–4224

    Article  Google Scholar 

  • Kai M, Effmert U, Berg G, Piechulla B (2007) Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch Microbiol 187:351–360. doi:10.1007/s00203-006-0199-0

    Article  PubMed  CAS  Google Scholar 

  • Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biot 81:1001–1012. doi:10.1007/s00253-008-1760-3

    Article  CAS  Google Scholar 

  • Keinänen MM, Korhonen LK, Martikainen PJ, Vartiainen T, Miettinen IT, Lehtola MJ, Nenonen K, Pajunen H, Kontro MH (2003) Gas chromatographic–mass spectrometric detection of 2- and 3-hydroxy fatty acids as methyl esters from soil, sediment and biofilm. J Chromatogr B 783:443–451. doi:10.1016/S1570-0232(02)00713-4

    Article  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886. doi:10.1038/286885a0

    Article  CAS  Google Scholar 

  • Leclère V, Béchet M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584. doi:10.1128/AEM.71.8.4577-4584.2005

    Article  PubMed  Google Scholar 

  • Liebman JA, Epstein L (1994) Partial characterization of volatile fungistatic compound(s) from soil. Phytopathol 84:442–446

    Article  CAS  Google Scholar 

  • Liu W, Mu W, Zhu B, Liu F (2008) Antifungal activity and components of VOC produced by Bacillus subtilis G8. Curr Res Bacteriol 1:28–34. doi:10.3923/crb.2008.28.34

    Article  CAS  Google Scholar 

  • Maresca B, Cossins AR (1993) Fatty feedback and fluidity. Nature 365:606–607. doi:10.1038/365606a0

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Absalón SC, Orozco-Mosqueda MC, Martinez-Pacheco MM, Farías-Rodriguez R, Govindappa M, Santoyo G (2012) Isolation and molecular characterization of a novel strain of Bacillus with antifungal activity from the sorghum rhizosphere. Genet Mol Res. doi:10.4238/2012.July.10.15

    PubMed  Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM, Piceno YM, DeSantis TZ, Andersen GL, Bakker PAHM, Raaijmakers JNM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100. doi:10.1126/science.1203980

    Article  PubMed  CAS  Google Scholar 

  • Minerdi D, Bossi S, Gullino ML, Garibaldi A (2009) Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environ Microbiol 11:844–854. doi:10.1111/j.1462-2920.2008.01805.x

    Article  PubMed  CAS  Google Scholar 

  • Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, Vanengelsdorp D, Pettis JS (2010) High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS One 5:e9754. doi:10.1371/journal.pone.0009754

    Article  PubMed  Google Scholar 

  • Orozco-Mosqueda MC, Velázquez-Becerra C, Macías-Rodríguez LI, Santoyo G, Flores-Cortez I, Alfaro-Cuevas R, Valencia-Cantero E (2013) Arthrobacter agilis UMCV2 induces iron acquisition in Medicago truncatula (Strategy I plant) in vitro via dimethylhexadecylamine emission. Plant Soil 362:51–66. doi:10.1007/s11104-012-1263-y

    Article  CAS  Google Scholar 

  • Santoyo G, Orozco-Mosqueda MC, Govindappa M (2012) Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Sci Technol 22:855–872. doi:10.1080/09583157.2012.694413

    Article  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:1–23. doi:10.1146/annurev-phyto-073009-114450

    Google Scholar 

  • Turk M, Montiel V, Žigon D, Plemenitaš A, Ramos J (2007) Plasma membrane composition of Debaryomyces hansenii adapts to changes in pH and external salinity. Microbiology 153:3586–3592. doi:10.1099/mic.0.2007/009563-0

    Article  PubMed  CAS  Google Scholar 

  • Valencia-Cantero E, Villegas-Moreno J, Sánchez-Yáñez JM, Peña-Cabriales JJ, Farías-Rodríguez R (2005) Fusarium oxysporum inhibition by Zum80 Pseudomonas fluorescens mutant strains unable to produce siderophores. Terra Latinoam 23:65–72

    Google Scholar 

  • Valencia-Cantero E, Hernández-Calderón E, Velázquez-Becerra C, López-Meza JE, Alfaro-Cuevas R, López-Bucio J (2007) Role of dissimilatory fermentative iron-reducing bacteria in Fe uptake by common bean (Phaseolus vulgaris L.) plants grown in alkaline soil. Plant Soil 291:263–273. doi:10.1007/s11104-007-9191-y

    Article  CAS  Google Scholar 

  • Velázquez-Becerra C, Macías-Rodríguez LI, López-Bucio J, Altamirano-Hernández J, Flores-Cortez I, Valencia-Cantero E (2011) A volatile organic compound isolated from Arthrobacter agilis modulates growth of Medicago sativa in vitro. Plant Soil 339:329–340. doi:10.1007/s11104-010-0583-z

    Article  Google Scholar 

  • Vespermann A, Kai M, Piechulla B (2007) Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl Environ Microbiol 73:5639–5641. doi:10.1128/AEM.01078-07

    Article  PubMed  CAS  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102:13386–13391. doi:10.1073/pnas.0504423102

    Article  PubMed  CAS  Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathol 97:250–256. doi:10.1094/PHYTO-97-2-0250

    Article  Google Scholar 

  • Xu C, Mo M, Zhang L, Zhang K (2004) Soil volatile fungistasis and volatile fungistatic compounds. Soil Biol Biochem 36:1997–2004. doi:10.1016/j.soilbio.2004.07.020

    Article  CAS  Google Scholar 

  • Zou CS, Mo MH, Gu YQ, Zhou JP, Zhang KQ (2007) Possible contributions of volatile-producing bacteria to soil fungistasis. Soil Biol Biochem 39:2371–2379. doi:10.1016/j.soilbio.2007.04.009

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Consejo Nacional de Ciencia y Tecnología (Mexico) for funding this work via projects 165738 (LIMR) and 128341 (EVC).

Conflict of interest

The authors declare that they do not have any financial relationship with the organization that sponsored the research (Conacyt-México) and that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Valencia-Cantero.

Additional information

Handling Editor: Néstor Carrillo

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(JPEG 454 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velázquez-Becerra, C., Macías-Rodríguez, L.I., López-Bucio, J. et al. The rhizobacterium Arthrobacter agilis produces dimethylhexadecylamine, a compound that inhibits growth of phytopathogenic fungi in vitro. Protoplasma 250, 1251–1262 (2013). https://doi.org/10.1007/s00709-013-0506-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-013-0506-y

Keywords

Navigation