Skip to main content
Log in

Morpho-anatomical characterization of mature embryo-derived callus of rice (Oryza sativa L.) suitable for transformation

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The objective of this study was to morpho-anatomically characterize embryogenic rice calli during early induction of somatic embryogenesis of three Brazilian rice cultivars. Herein, we explored embryogenic units (EUs) from 2-week-old cut proliferated calli to verify whether they were suitable for Agrobacterium tumefasciens-mediated transformation. Histological analysis and scanning electron microscopy (SEM) were used to analyze these types of calli during early rice callogenesis in the cultivars BRS Primavera, BRS Bonança, and BRS Caiapó. The characteristics of the embryogenic cells were preserved in the EUs, which showed a globular, compact structure that contained tightly packed cells and thus rendered the cells suitable for transformation. The EUs of BRS Caiapó also maintained the characteristics of the non-embryogenic callus, such as an elongated morphology and a lack of cellular organization. In general, the observations of the histological sections corresponded with those of the SEM images. The histological analysis suggested that all cultivars used in these experiments have morphogenic potential. The EUs from proliferated 2-week-old cut calli maintained their embryogenic features. The EUs were subjected to Agrobacterium-mediated transformation, which exhibited a regeneration frequency of 58 % for transformed hygromycin-resistant cell lines. These results show that EUs from proliferated 2-week-old cut calli are suitable for plant transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ECM:

Extracellular matrix

ECMSN:

Extracellular matrix surface network

EUs1:

Embryogenic units

EUs2:

Proliferated 2-week-old cut calli

IM:

Induction medium

MS:

Murashige and Skoog

SEM:

Scanning electron microscopy

2,4-D:

2,4-Dichlorophenoxyacetic acid

References

  • Abe T, Futsuhara Y (1985) Efficient plant regeneration from protoplast through somatic embryogenesis. Biol Technol 4:1087–1090

    Google Scholar 

  • Alfonso-Rubi J, Carbonero P, Diaz I (1999) Parameters influencing the regeneration capacity of calluses derived from mature indica and japonica rice seeds after microprojectile bombardment. Euphytica 107:115–122

    Article  Google Scholar 

  • Brisibe EA, Miyake H, Taniguchi T et al (1992) Callus formation and scanning electron microscopy of plantlet regeneration in African rice (Oryza glaberrima Steud). Plant Sci 83:217–224

    Article  CAS  Google Scholar 

  • Chapman A, Blervacq AS, Hendrix T et al (2000) Cell wall differentiation during early somatic embryogenesis in plants. II. Ultrastructural study and pectin immunolocalization on chicory embryos. Can J Bot 78:824–831

    CAS  Google Scholar 

  • Chen TH, Lam L, Chen SC (1985) Somatic embryogenesis and plant regeneration from cultured young inflorescences of Oryza sativa L. (rice). Plant Cell Tissue Org Cult 4:51–54

    Article  Google Scholar 

  • Datta K, Tu JM, Oliva N et al (2001) Enhanced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars. Plant Sci 160:405–414

    Article  PubMed  CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Report 4:19–21

    Article  Google Scholar 

  • Dong J, Teng W, Buchholz WG et al (1996) Agrobacterium-mediated transformation of javanica rice. Mol Breed 2:267–276

    Article  CAS  Google Scholar 

  • Dubois T, Guedira M, Vasseur J (1991) Direct somatic embryogenesis in leaves of Cichorium. A histological and SEM study of early stages. Protoplasma 162:120–127

    Article  Google Scholar 

  • Fehér A, Pasternak T, Otvos K et al (2002) Induction of embryogenic competence in somatic plant cells: a review. Biologia 57:5–12

    Google Scholar 

  • Hiei Y, Komari T (2008) Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat Protoc 3:824–834

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T et al (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T et al (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35:205–218

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the Gus gene fusion system. Plant Mol Biol Report 5:387–405

    Article  CAS  Google Scholar 

  • Jones TJ, Rost TL (1989) The developmental anatomy and ultrastructural of somatic embryos from rice (Oryza sativa L.) scutellum epithelial cells. Bot Gaz 150:41–49

    Article  Google Scholar 

  • Kachar B, Parakkal M, Frex J (1990) Structural basis form mechanical transduction in the frog vestibular sensory apparatus: the otholitic membrane. Hear Res 45:179–190

    Article  PubMed  CAS  Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde–glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137–138

    Google Scholar 

  • Khatun MM, Ali MH, Desamero NV (2003) Effect of genotype and culture media on callus formation and plant regeneration from mature seed scutella culture in rice. Plant Tissue Cult 13:99–107

    Google Scholar 

  • Konieczny R, Bohdanowicz J, Czaplicki AZ et al (2005) Extracellular matrix surface network during plant regeneration in wheat anther culture. Plant Cell Tissue Org Cult 83:201–208

    Article  Google Scholar 

  • Lai KS, Yusoff K, Maziah M (2011) Extracellular matrix as the early structural marker for Centella asiatica embryogenic tissues. Biol Plant 55:549–553

    Article  CAS  Google Scholar 

  • Lee KS, Jeon HS, Kim MY (2002) Optimization of a mature embryo-based in vitro culture system for high-frequency somatic embryogenic callus induction and plant regeneration from japonica rice cultivars. Plant Cell Tissue Org Cult 71:237–244

    Article  CAS  Google Scholar 

  • Lin YJ, Zhang Q (2005) Optimizing the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep 23:540–547

    Article  PubMed  CAS  Google Scholar 

  • McCann MC, Wells B, Roberts K (1990) Direct visualization of cross-links in the primary plant cell wall. J Cell Sci 96:323–334

    Google Scholar 

  • Mendoza AB, Futsuhara Y (1992) Histological observations on plant regeneration in rice (Oryza sativa L.) calli. Jpn J Breed 42:33–41

    Article  Google Scholar 

  • Mendoza AB, Hattori K, Nishimura T et al (1993) Histological and scanning electron microscopic observations on plant regeneration in mungbean cotyledon (Vigna radiata (L.) Wilczek) cultured in vitro. Plant Cell Tissue Org Cult 32:137–143

    Article  Google Scholar 

  • Molina D, Aponte M, Cortina H (2002) The effect of genotype and explant age on somatic embryogenesis of coffee. Plant Cell Tissue Org Cult 71:117–123

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:437–497

    Article  Google Scholar 

  • Nabors MW, Heyser JW, Dykes TA et al (1983) Long-duration, high-frequency plant regeneration from cereal tissue cultures. Planta 157:385–391

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa Y, Machida C, Machida Y et al (2000) Frequency and pattern of transposition of the maize transposable element Ds in transgenic rice plants. Plant Cell Physiol 41:733–742

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Maeda E (1989) A scanning electron microscope study on japonica type rice callus cultures, with emphasis on plantlet initiation. Jpn J Crop Sci 58:395–403

    Article  Google Scholar 

  • Namasivayam P (2007) Acquisition of embryogenic competence during somatic embryogenesis. Plant Cell Tissue Org Cult 90:1–8

    Article  CAS  Google Scholar 

  • Namasivayam P, Skepper J, Hanke D (2006) Identification of a potential structural marker for embryogenic competency in the Brassica napus ssp. Oleifera embryogenic tissue. Plant Cell Rep 25:887–895

    Article  PubMed  CAS  Google Scholar 

  • Narciso JO, Hattori K (2010) Genotypic differences in morphology and ultrastructures of callus derived from selected rice varieties. Philipp Sci Lett 3:59–65

    Google Scholar 

  • Nishimura S, Maeda E (1977) Histological studies of callus induction in rice seed. Jpn J Crop Sci 46:275–285

    Article  Google Scholar 

  • Ovečka M, Bobák M, Blehová A et al (1998) Papaver somniferum regeneration by somatic embryogenesis and shoot organogenesis. Biol Plant 40:321–328

    Article  Google Scholar 

  • Pescador R, Araújo PS, Maas CH et al (2000) Biotecnologia de Piper hispidinervium—pimenta longa. Biotecnol Cienc Desenvolv 3:19–23

    Google Scholar 

  • Pilarska M, Czaplicki A, Konieczny R (2007) Patterns of pectin epitope expression during shoot and root regeneration in androgenic cultures of two wheat cultivars. Acta Biol Cracov Bot 49:69–72

    Google Scholar 

  • Popielarska M, Ślesak H, Goralski G (2006) Histological and SEM studies on organogenesis in endosperm-derived callus of kiwifruit (Actinidia deliciosa cv. hayward). Acta Biol Cracov Bot 48:97–104

    Google Scholar 

  • Popielarska-Konieczna M, Bohdanowicz J, Starnawska E (2010) Extracellular matrix of plant callus tissue visualized by ESEM and SEM. Protoplasma 247:121–125

    Article  PubMed  Google Scholar 

  • Popielarska-Konieczna M, Kozieradzka-Kiszkurno M, Bohdanowicz J (2011) Cutin plays a role in differentiation of endosperm-derived callus of kiwifruit. Plant Cell Rep 30:2143–2152

    Article  PubMed  CAS  Google Scholar 

  • Pravin VJ, Dudhare MS, Saluja T, Sarawgi C (2011) Assessment of critical factors influencing callus induction, in vitro regeneration and selection of bombarded indica rice genotypes. J Agric Biotechnol Sustain Dev 3:44–59

    Google Scholar 

  • Quiroz-Figueroa FR, Rojas-Herrera R, Galaz-Avalos RM et al (2006) Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tissue Org Cult 86:285–301

    Article  Google Scholar 

  • Rashid H, Bokhari SYA, Quraishi A (2001) Callus induction, regeneration and hygromycin selection of rice (Super Basmati). Online J Biol Sci 1:1145–1146

    Article  Google Scholar 

  • Saika H, Toki S (2010) Mature seed-derived callus of the model indica rice variety Kasalath is highly competent in Agrobacterium-mediated transformation. Plant Cell Rep 29:1351–1364

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sallaud C, Meynard D, Van Boxtel J et al (2003) Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics. Theor Appl Genet 106:1396–1408

    PubMed  CAS  Google Scholar 

  • Samaj MB, Bobak M, Blehova A et al (1995) Developmental SEM observations on an extracellular matrix in embryogenic calli of Drosera rotundifolia and Zea mays. Protoplasma 186:45–49

    Article  Google Scholar 

  • Samaj J, Baluška F, Bobák M et al (1999) Extracellular matrix surface network of embryogenic units of friable maize callus contains arabinogalactan-proteins recognized by monoclonal antibody JIM4. Plant Cell Rep 18:369–374

    Article  CAS  Google Scholar 

  • Sangduen N, Klamsomboon P (2001) Histological and scanning electron observations on embryogenic and non-embryogenic calli of aromatic Thai rice (Oryza sativa L. cv. Khao Daw Mali 105). Kasetsart J (Nat Sci) 35:427–432

    Google Scholar 

  • Silva PI Jr, Daffre S, Bulet P (2000) Isolation and characterization of gomesin, an 18-residue cysteine-rich defense peptide from the spider Acanthoscurria gomesiana hemocytes with sequence similarities to horseshoe crab antimicrobial peptides of the tachyplesin family. J Biol Chem 275:33464–33470

    Article  PubMed  CAS  Google Scholar 

  • Vega R, Vásquez N, Espinoza AM et al (2009) Histology of somatic embryogenesis in rice (Oryza sativa cv. 5272). Rev Biol Trop 57:141–150

    Google Scholar 

  • Verdeil JL, Hocher V, Huet C et al (2001) Ultrastructural changes in coconut calli associated with the acquisition of embryogenic competence. Ann Bot 88:9–18

    Article  Google Scholar 

  • Visarada KBRS, Sailaja M, Sarma NP (2002) Effect of callus induction media on morphology of embryogenic calli in rice genotypes. Biol Plant 45:495–502

    Article  CAS  Google Scholar 

  • Williams EG, Maheswaran G (1986) Somatic embryogenesis: factors influencing coordinated behaviour of cells as an embryogenic group. Ann Bot 57:443–462

    Google Scholar 

  • Yusoff NFM, Alwee SSRS, Abdullah MO (2012) A time course anatomical analysis of callogenesis from young leaf explants of oil palm (Elaeis guineensis Jacq.). J Oil Palm Res 24:1330–1341

    Google Scholar 

Download references

Acknowledgments

We thank the Universidade Federal de Goiás for the use of the LabMIC and the Laboratório de Morfologia e Anatomia de Plantas. This work was funded by Embrapa and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bevitori.

Additional information

Handling Editor: Pavla Binarova

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bevitori, R., Popielarska-Konieczna, M., dos Santos, E.M. et al. Morpho-anatomical characterization of mature embryo-derived callus of rice (Oryza sativa L.) suitable for transformation. Protoplasma 251, 545–554 (2014). https://doi.org/10.1007/s00709-013-0553-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-013-0553-4

Keywords

Navigation