Skip to main content

Advertisement

Log in

Isolation, structure determination, and antiaging effects of 2,3-pentanediol from endophytic fungus of Curcuma amada and docking studies

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

An endophytic fungus was isolated from the rhizomes of Curcuma amada (Zingiberaceae), which was identified as Fusarium oxysporum on the basis of its morphological and molecular characters. Chromatographic separation and spectroscopic analysis of the fungal metabolite (chloroform extract) led to the identification of one pure compound having molecular formula C5H12O2, i.e., 2,3-pentanediol (1). Activity analysis of compound 1 demonstrated improved antiaging (antioxidant, thermotolerance) properties against Caenorhabditis elegans, in comparison to a similar, commercially available molecule i.e., 1,5-pentanediol (2). The effective (lower) concentration of 1 significantly showed (28.6 %) higher survival percentage of the worms under thermal stress (37 ºC) compared to its higher concentration (25.3 %), while similar trends were followed in oxidative stress where (22.2 %) higher survival percentage was recorded in comparison to untreated control. The compound 1, however, lacked potential antimicrobial activity, indicating the plausible ramification of the position of OH group in such bioactive molecules. In silico evaluation of these molecules against common as well as unique targets corroborated better antiaging potential of 1 in comparison to that of 2. The results for the first time indicated that the utilization of the endophytic fungi of C. amada could, thus, be a possible source for obtaining non-plant-based bioactive compounds having broader therapeutic applications pertaining to age-related progressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90:1829–1845

    Article  CAS  PubMed  Google Scholar 

  • Banu GS, Kumar G (2009) Preliminary screening of endophytic fungi from medicinal plants in India for antimicrobial and antitumor activity. Int J Pharm Sci Nanotechnol 2:566–571

    Google Scholar 

  • Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496

    CAS  PubMed  Google Scholar 

  • Bhagat J, Kaur A, Sharma M, Saxena AK, Chadha BS (2012) Molecular and functional characterization of endophytic fungi from traditional medicinal plants. World J Microbiol Biotechnol 28:963–971

    Article  CAS  PubMed  Google Scholar 

  • Bian GK, Qin S, Yuan B, Zhang YJ, Xing K, Ju XY, Li WJ, Jiang JH (2012) Streptomyces phytohabitans sp. nov., a novel endophytic actinomycete isolated from medicinal plant Curcuma phaeocaulis. Antonie Van Leeuwenhoek 102:289–296

    Article  CAS  PubMed  Google Scholar 

  • Botes L, Westhuizen FHVD, Loots DT (2008) Phytochemical contents and antioxidant capacities of two Aloe greatheadii var. davyana extracts. Molecules 13:2169–2180

    Article  CAS  PubMed  Google Scholar 

  • Chandra S (2012) Endophytic fungi: novel sources of anticancer lead molecules. Appl Microbiol Biotechnol 95:47–59

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Yi D, Bai X, Sun B, Zhao Y, Zhang Y (2012) Ginkgolide B produced endophytic fungus (Fusarium oxysporum) isolated from Ginkgo biloba. Fitoterapia 83:913–920

    Article  CAS  PubMed  Google Scholar 

  • Cushnie TPT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356

    Article  CAS  PubMed  Google Scholar 

  • Faergemann J, Wahlstrand B, Hedner T, Johnsson J, Neubert RHH, Nyström L, Maibach H (2005) Pentane-1,5-diol as a percutaneous absorption enhancer. Arch Dermatol Res 297:261–265

    Article  CAS  PubMed  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  PubMed  Google Scholar 

  • Forster RE, Jurutka PW, Hsieh JC, Haussler CA, Lowmiller CL, Kaneko I, Haussler MR, Kerr Whitfield G (2011) Vitamin D receptor controls expression of the anti-aging klotho gene in mouse and human renal cells. Biochem Biophys Res Commun 414:557–562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guarente L, Kenyon C (2000) Genetic pathways that regulate ageing in model organisms. Nature 408:255–262

    Article  CAS  PubMed  Google Scholar 

  • Gunatilaka AAL (2006) Natural products from plant-associated microorganism: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guo B, Wang Y, Sun X, Tang K (2008) Bioactive natural products from endophytes: a review. Appl Biochem Microbiol 44:136–142

    Article  CAS  Google Scholar 

  • Huang WY, Cai YZ, Xing J, Corke H, Sun M (2007) A potential antioxidant resource: endophytic fungi from medicinal plants. Econ Bot 61:14–30

    Article  CAS  Google Scholar 

  • Ji XJ, Huang H, Ouyang PK (2011) Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv 29:351–359

    Article  CAS  PubMed  Google Scholar 

  • Kour A, Shawl AS, Rehman S, Sultan P, Qazi PH, Suden P, Khajuria RK, Verma V (2008) Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World J Microbiol Biotechnol 24:1115–1121

    Article  CAS  Google Scholar 

  • Lang S, Lang-Bo Y, Li Z, Qing-jing P, Qing-zhong P (2010) Endophytic mycobiota in the rhizome of Curcuma longa. Chin J Microecology 22:690–692

    Google Scholar 

  • Lin T, Wang GH, Lin X, Hu ZY, Chen QC, Xu Y, Zhang XK, Chen HF (2011) Three new oblongolides from Phomopsis sp. XZ-01, an endophytic fungus from Campotheca acuminate. Molecules 16:3351–3359

    Article  CAS  PubMed  Google Scholar 

  • Lithgow GJ, White TM, Melov S, Johnson TE (1995) Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc Natl Acad Sci U S A 92:7540–7544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu X, Ouyang S, Yu B, Huang K, Liu Y, Gong J, Zheng S, Li Z, Li H, Jiang H (2010) PharmMapper server: a web server for potential drug target identification via pharmacophore mapping approach. Nucleic Acids Res 38:W609–W614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maehara S, Ikeda M, Haraguchi H, Kitamura C, Nagoe T, Ohashi K, Shibuya H (2011) Microbial conversion of curcumin into colorless hydroderivatives by the endophytic fungus Diaporthe sp. associated with Curcuma longa. Chem Pharm Bull 59:1042–1044

    Article  CAS  PubMed  Google Scholar 

  • Policegoudra RS, Abiraj K, Gowda DC, Aradhya SM (2007) Isolation and characterization of antioxidant and antibacterial compound from mango ginger (Curcuma amada Roxb.) rhizome. J Chromatogr B 852:40–48

    Article  CAS  Google Scholar 

  • Royall JA, Ischiropoulos H (1993) Evaluation of 2′,7′-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch Biochem Biophys 302:348–355

    Article  CAS  PubMed  Google Scholar 

  • Shukla V, Yadav D, Phulara SC, Gupta MM, Saikia SK, Pandey R (2012) Longevity-promoting effects of 4-hydroxy-E-globularinin in Caenorhabditis elegans. Free Radic Biol Med 53:1848–1856

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Kumar JK, Saikia D, Shanker K, Negi AS, Banerjee S (2010) A bioactive labdane diterpenoid from Curcuma amada and its semisynthetic analogues as antitubercular agents. Eur J Med Chem 45:4379–4382

    Article  CAS  PubMed  Google Scholar 

  • Sulston JE, Brenner S (1974) The DNA of Caenorhabditis elegans. Genetics 77:95–105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sundberg JJ, Faergemann J (2008) A comparison of pentane-1,5-diol to other diols for use in dermatology. Expert Opin Investig Drugs 17:601–610

    Article  CAS  PubMed  Google Scholar 

  • Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Gopalan V (2012) Fungal endophytes: an untapped source of biocatalysts. Fungal Divers 54:19–30

    Article  Google Scholar 

  • Taylor AAJ, Mottram DDS (1996) Flavour Science: Recent Developments; [The proceedings of the eighth Weurman Flavour Research Symposium, held in Reading, UK, on 23–26 July]

  • Ultee A, Bennik MHJ, Moezelaar R (2002) Appl Environ Microb 68:1561–1568

    Article  CAS  Google Scholar 

  • Walker RB, Smith EW (1996) The role of percutaneous penetration enhancers. Adv Drug Deliv Rev 18:295–301

    Article  CAS  Google Scholar 

  • Wang LW, Xu BG, Wang JY, Su ZZ, Lin FC, Zhang CL, Kubicek CP (2012a) Appl Microbiol Biotechnol 93:1231–1239

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Xu L, Ren W, Zhao D, Zhu Y, Wu X (2012b) Bioactive metabolites from Chaetomium globosum L18, an endophytic fungus in the medicinal plant Curcuma wenyujin. Phytomedicine 19:364–368

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Wilson MA, Hale BS, Kalt W, Ingram DK, Joseph JA, Wolkow CA (2006) Blueberry polyphenols increase lifespan and thermotolerance in C aenorhabditis elegans. Aging cell 5:59–68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wuttke D, Connor R, Vora C, Craig T, Li Y, Wood S, Vasieva O, Shmookler Reis R, Tang F, de Magalhaes JP (2012) Dissecting the gene network of dietary restriction to identify evolutionarily conserved pathways and new functional genes. PLoS Genet. doi:10.1371/journal.pgen.1002834

    PubMed Central  PubMed  Google Scholar 

  • Zhang L, Jie G, Zhang J, Zhao B (2009) Significant longevity-extending effects of EGCG on Caenorhabditis elegans under stress. Free Radic Biol Med 46:414–421

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Zhu H, Liu L, Lin J, Tang K (2010) A review: recent advances and future prospects of taxol-producing endophytic fungi. Appl Microbiol Biotechnol 86:1707–1717

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to express their sincere thanks to the director, CSIR-CIMAP, for providing the necessary facilities to carry out this research. Thanks are also due to Council of Scientific and Industrial Research (CSIR), New Delhi, India, for the financial support.

Conflict of interest

Authors have no conflict of interest in this paper. The author (Rakesh Pandey) is grateful to the Council of Scientific and Industrial Research, Pusa Road, New Delhi, for their financial grant of this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rakesh Pandey or Suchitra Banerjee.

Additional information

Handling Editor: Jan Raoul De Mey

Sudeep Tiwari and Sailendra Singh contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiwari, S., Singh, S., Pandey, P. et al. Isolation, structure determination, and antiaging effects of 2,3-pentanediol from endophytic fungus of Curcuma amada and docking studies. Protoplasma 251, 1089–1098 (2014). https://doi.org/10.1007/s00709-014-0617-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-014-0617-0

Keywords

Navigation