Skip to main content
Log in

Anther ontogeny in Brachypodium distachyon

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Brachypodium distachyon has emerged as a model plant for the improvement of grain crops such as wheat, barley and oats and for understanding basic biological processes to facilitate the development of grasses as superior energy crops. Brachypodium is also the first species of the grass subfamily Pooideae with a sequenced genome. For obtaining a better understanding of the mechanisms controlling male gametophyte development in B. distachyon, here we report the cellular changes during the stages of anther development, with special reference to the development of the anther wall. Brachypodium anthers are tetrasporangiate and follow the typical monocotyledonous-type anther wall formation pattern. Anther differentiation starts with the appearance of archesporial cells, which divide to generate primary parietal and primary sporogenous cells. The primary parietal cells form two secondary parietal layers. Later, the outer secondary parietal layer directly develops into the endothecium and the inner secondary parietal layer forms an outer middle layer and inner tapetum by periclinal division. The anther wall comprises an epidermis, endothecium, middle layer and the secretory-type tapetum. Major documented events of anther development include the degradation of a secretory-type tapetum and middle layer during the course of development and the rapid formation of U-shaped endothecial thickenings in the mature pollen grain stage. The tapetum undergoes degeneration at the tetrad stage and disintegrates completely at the bicellular stage of pollen development. The distribution of insoluble polysaccharides in the anther layers and connective tissue through progressive developmental stages suggests their role in the development of male gametophytes. Until sporogenous cell stage, the amount of insoluble polysaccharides in the anther wall was negligible. However, abundant levels of insoluble polysaccharides were observed during microspore mother cell and tetrad stages and gradually declined during the free microspore and vacuolated microspore stages to undetectable level at the mature stage. Thus, the cellular features in the development of anthers in B. distachyon share similarities with anther and pollen development of other members of Poaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alves SC, Worland B, Thole V, Snape JW, Bewan MW, Vain P (2009) A protocol for Agrobacterium-mediated transformation of Brachypodium distachyon community standard line Bd21. Nat Protoc 4:638–649

    Article  CAS  PubMed  Google Scholar 

  • Aybeke M (2012) Anther wall and pollen development in Ophrys mammosa L. (Orchidaceae). Plant Syst Evol 298:1015–1023

    Article  Google Scholar 

  • Bedinger PA (1992) The remarkable biology of pollen. Plant Cell 4:879–887

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bevan MW, Garvin DF, Vogel JP (2010) Brachypodium distachyon genomics for sustainable food and fuel production. Curr Opin Biotech 21:211–217

    Article  CAS  PubMed  Google Scholar 

  • Bhandari NN (1984) The microsporangium. In: Johri BM (ed) The embryology of angiosperms. Springer, Berlin, pp 53–157

    Chapter  Google Scholar 

  • Bhanwra RK (1988) Embryology in relation to systematic of Gramineae. Ann Bot 62(2):215–233

    Google Scholar 

  • Carrizo Garcia C (2002) Anther wall formation in Solanaceae species. Ann Bot 90:701–706

    Article  PubMed Central  PubMed  Google Scholar 

  • Christensen JE, Horner HT, Lersten NR (1972) Pollen wall and tapetal orbicular wall development in Sorghum bicolour (Graminae). Am J Bot 59:43–58

    Article  Google Scholar 

  • Clèment C, Chavant L, Burrus M, Audran JC (1994) Anther starch variations in Lilium during pollen development. Sex Plant Reprod 7:347–356

    Article  Google Scholar 

  • Datta R, Chamusco KC, Chourey PS (2002) Starch biosynthesis during pollen maturation is associated with altered patterns of gene expression in maize. Plant Physiol 130:1645–1656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davis GL (1996) Systematic embryology of the angiosperms. Wiley, New York

    Google Scholar 

  • Dorion S, Lalonde S, Saini HS (1996) Induction of male sterility in wheat by meiotic stage water deficit is preceded by a decline in invertase activity and changes in carbohydrate metabolism in anthers. Plant Physiol 111:137–145

    PubMed Central  CAS  PubMed  Google Scholar 

  • Draper J, Mur LA, Jenkins G, Ghosh-Biswas GC, Bablak P, Hasterok R, Routledge AP (2001) Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol 127:1539–1555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • El-Ghazaly G, Jensen WA (1986) Studies of the development of wheat (Triticum aestivum) pollen. I Formation Pollen Wall Ubisch Bodies Grana 25:1–29

    Google Scholar 

  • Garvin DF, Gu YQ, Hasterok R, Hazen SP, Jenkins G, Mockler TC, Mur LAJ, Vogel JP (2008) Development of genetic and genomic research resources for Brachypodium distachyon, a new model system for grass crop research. Crop Sci 48:S69–S84

    Article  Google Scholar 

  • Hardy CR, Stevensen DW (2000) Development of the gametophytes, flower and floral vasculature in Cochliostema odoratissumum (Commelinaceae). Bot J Linn Soc 134:131–157

    Google Scholar 

  • Heslop-Harrison J (1964) Cell walls, cell membranes and protoplasmic connections during meiosis and pollen development. In: Linskens HF (eds) Pollen physiology and fertilization. Amsterdam, North-Holland, pp 39–47

  • Heslop-Harrison J, Dickinson MC (1969) Fine relationship of sporopollenin synthesis associated with tapetum and microspore in Lilium. Planta 84:199–214

    Article  CAS  PubMed  Google Scholar 

  • Hesse M (1986) Orbicules and the ektexine are homologous sporopollenin concretions in Spermatophyta. Plant Syst Evol 153:37–48

    Article  CAS  Google Scholar 

  • Hong SY, Park JH, Cho SH, Yang MS, Park CM (2011) Phenological growth stages of Brachypodium distachyon: codification and description. Weed Res. doi:10.1111/j.1365-3180.2011.00877.x

    Google Scholar 

  • Huysmans S, El-Ghazaly G, Smets E (1998) Orbicules in angiosperms: morphology, function, distribution, and relation with tapetum type. Bot Rev 64:240–272

    Article  Google Scholar 

  • Johri BM, Ambegaokar KB, Srivastava PS (1992) Comparative embryology of Angiosperms, vol 1. Springer, Berlin, pp 504–509

    Book  Google Scholar 

  • Liu CC, Huang TC (2003) Anther and pollen wall development in Dumasia miaoliensis Liu and Lu (Fabaceae). Taiwania 48:273–281

    Google Scholar 

  • Maheshwari P (1950) An introduction to the embryology of angiosperms. McGraw-Hill, New York

    Google Scholar 

  • Mascarenhas JP (1989) The male gametophyte of flowering plants. Plant Cell 1:657–664

    Article  PubMed Central  PubMed  Google Scholar 

  • Mizelle MB, Sethi R, Ashton ME, Jensen WA (1989) Development of the pollen grain and tapetum of wheat (Triticum aestivum) in untreated plants and plants treated with chemical hybridizing agent RH0007. Sex Plant Reprod 2:231–253

    Article  Google Scholar 

  • Opanowicz M, Vain P, Draper J, Parker D, Doonan JH (2008) Brachypodium distachyon: making hay with a wild grass. Trends Plant Sci 13:172–177

    Article  CAS  PubMed  Google Scholar 

  • Pacini E (1990) Tapetum and microspore function. In: Blackmore S, Knox RB (eds) Microspores: evolution and ontogeny. Academic, London, pp 213–237

    Chapter  Google Scholar 

  • Pacini E (1997) Tapetum character states: analytical keys for tapetum types and activities. Can J Bot 75:1448–1459

    Article  Google Scholar 

  • Pacini E (2000) From anther and pollen ripening to pollen presentation. Plant Syst Evol 222:19–43

    Article  Google Scholar 

  • Pacini E (2010) Relationships between tapetum, loculus, and pollen during development. Int J Plant Sci 171:1–11

    Article  Google Scholar 

  • Pacini E, Franchi GG, Hesse M (1985) The tapetum: its form, function, and possible phylogeny in Embryophyta. Plant Syst Evol 149:155–185

    Article  Google Scholar 

  • Papini A, Mosti S, Brighigna L (1999) Programmed cell death events during tapetum development of angiosperms. Protoplasma 207:213–221

    Article  Google Scholar 

  • Polowick PL, Sawhney VK (1992) Ultrastructural changes in the cell wall, nucleus and cytoplasm of pollen mother cells during meiotic prophase I in Lycopersicum esculentum (Mill.). Protoplasma 169:139–147

    Article  Google Scholar 

  • Raghavan V (1988) Anther and pollen development in rice (Oryza sativa). Am J Bot 75:183–196

    Article  Google Scholar 

  • Risueno MC, Gimenez-Martin G, Lopez-Saez JF, Garcia MIR (1969) Origin and development of sporopollenin bodies. Protoplasma 67:361–374

    Article  Google Scholar 

  • Rowley JR (1963) Ubisch body development in Poa annua. Grana Palynol 4:25–36

    Article  Google Scholar 

  • Sato T (1968) A modified method for lead staining of thin sections. J Electr Microsc, Tokyo 17:158–159

    CAS  Google Scholar 

  • Schrauwen JAM, Mettenmeyer T, Croes AF, Wullems GJ (1996) Tapetum-specific genes: what role do they play in male gametophyte development. Acta Bot Neerl 45:1–15

    Article  CAS  Google Scholar 

  • Sharma A, Singh MB, Bhalla PL (2014) Cytochemistry of pollen development in Brachypodium distachyon. Plant Syst Evol. doi:10.1007/s00606-014-0989-9

    Google Scholar 

  • Shivanna KR (2003) Pollen biology and biotechnology. Science, New Hampshire

    Google Scholar 

  • Solís MT, Chakrabarti N, Corredor E, Cortés-Eslava J, Rodríguez-Serrano M, Biggiogera M, Risueno MC, Testillano PS (2014) Epigenetic changes accompany developmental programmed cell death in tapetum cells. Plant Cell Physiol 55(1):16–29

    Article  PubMed  Google Scholar 

  • Teng N, Huang Z, Xijin M, Jin B, Hu Y, Lin J (2005) Microsporogenesis and pollen development in Leymus chinensis with emphasis on dynamic changes in callose deposition. Flora 200:256–263

    Article  Google Scholar 

  • Vogel J, Hill T (2008) High-efficiency Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21-3. Plant Cell Rep 27:471–478

    Article  CAS  PubMed  Google Scholar 

  • Wu HM, Cheung AY (2000) Programmed cell death in plant reproduction. Development 44:267–281

    Google Scholar 

  • Zhang D, Luo X, Lu Z (2011) Cytological analysis and genetic control of rice anther development. J Genet Genomics 38:379–390

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Simon Crawford for technical guidance with electron microscopy and access to Advanced Microscopy Facility, The University of Melbourne. AS also thanks Dr. Martin O’Brien for helping in identifying the stages of anther and pollen development and Dr. Lim Chee Liew for helping in organizing the figures during manuscript preparation. Financial support from the Australian Research Council (ARC DPO988972) is also gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem L. Bhalla.

Additional information

Handling Editor: Benedikt Kost

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Singh, M.B. & Bhalla, P.L. Anther ontogeny in Brachypodium distachyon . Protoplasma 252, 439–450 (2015). https://doi.org/10.1007/s00709-014-0689-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-014-0689-x

Keywords

Navigation