Skip to main content
Log in

Noble gas geochemistry of fluid inclusions in South African diamonds: implications for the origin of diamond-forming fluids

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Fibrous diamond growth zones often contain abundant high-density fluid (HDF) inclusions and these provide the most direct information on diamond-forming fluids. Noble gases are incompatible elements and particularly useful in evaluating large-scale mantle processes. This study further constrains the evolution and origin of the HDFs by combining noble gas systematics with δ13C, N concentrations, and fluid inclusion compositions for 21 individual growth zones in 13 diamonds from the Finsch (n = 3), DeBeers Pool (n = 7), and Koffiefontein (n = 3) mines on the Kaapvaal Craton. C isotope compositions range from −2.8 to −8.6‰ and N contents vary between 268 and 867 at.ppm, except for one diamond with contents of <30 at.ppm N. Nine of the thirteen studied diamonds contained saline HDF inclusions, but the other four diamonds had carbonatitic or silicic HDF inclusions. Carbonatitic and silicic HDFs yielded low He concentrations, R/Ra (3He/4Hesample/3He/4Heair) values of 3.2–6.7, and low 40Ar/36Ar ratios of 390–1940. Noble gas characteristics of carbonatitic-silicic HDFs appear consistent with a subducted sediment origin and interaction with eclogite. Saline HDFs are characterised by high He concentrations, with R/Ra mostly between 3.9 and 5.7, and a wide range in 40Ar/36Ar ratios (389–30,200). The saline HDFs likely originated from subducted oceanic crust with low He but moderate Ar contents. Subsequent interaction of these saline HDFs with mantle peridotite could explain the increase in He concentrations and mantle-like He isotope composition, with the range in low to high 40Ar/36Ar ratios dependent on the initial 36Ar content and extent of lithosphere interaction. The observed negative correlation between 4He contents and R/Ra values in saline HDFs indicates significant in situ radiogenic 4He production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allsopp H, Bristow J, Smith C, Brown R, Gleadow A, Kramers J, Garvie O (1989) A summary of radiometric dating methods applicable to kimberlites and related rocks. In: Ross J et al (eds) Kimberlites and related rocks: Their composition, occurrence, origin and emplacement. Geol Soc Australia Spec Publ 14, vol 1. Blackwells Scientific Press, Oxford, pp 343–357

    Google Scholar 

  • Ballentine CJ, Holland G (2008) What CO well gases tell us about the origin of noble gases in the mantle and their relationship to the atmosphere. Philos T Roy Soc A 366:4183–4203

    Article  Google Scholar 

  • Boyd S, Pillinger C, Milledge H, Mendelssohn M, Seal M (1992) C and N isotopic composition and the infrared absorption spectra of coated diamonds: evidence for the regional uniformity of CO2–H2O-rich fluids in lithospheric mantle. Earth Planet Sc Lett 109:633–644

    Article  Google Scholar 

  • Brandon AD, Becker H, Carlson RW, Shirey SB (1999) Isotopic constraints on time scales and mechanisms of slab material transport in the mantle wedge: evidence from the Simcoe mantle xenoliths, Washington, USA. Chem Geol 160:387–407

    Article  Google Scholar 

  • Burgess R, Cartigny P, Harrison D, Hobson E, Harris J (2009) Volatile composition of microinclusions in diamonds from the Panda kimberlite, Canada: Implications for chemical and isotopic heterogeneity in the mantle. Geochim Cosmochim Ac 73:1779–1794

    Article  Google Scholar 

  • Burgess R, Johnson L, Mattey D, Harris J, Turner G (1998) He, Ar and C isotopes in coated and polycrystalline diamonds. Chem Geol 146:205–217

    Article  Google Scholar 

  • Burgess R, Layzelle E, Turner G, Harris JW (2002) Constraints on the age and halogen composition of mantle fluids in Siberian coated diamonds. Earth Planet Sc Lett 197:193–203

    Article  Google Scholar 

  • Burnard P (2004) Diffusive fractionation of noble gases and helium isotopes during mantle melting. Earth Planet Sc Lett 220:287–295

    Article  Google Scholar 

  • Davis GL (1978) Zircons from the mantle. Carnegie I Wash 77:895–897

    Google Scholar 

  • Day JM, Hilton DR, Pearson DG, Macpherson CG, Kjarsgaard BA, Janney PE (2005) Absence of a high time-integrated 3He/(U+ Th) source in the mantle beneath continents. Geology 33:733–736

    Article  Google Scholar 

  • Griffin WL, O’Reilly SY, Abe N, Aulbach S, Davies RM, Pearson NJ, Doyle BJ, Kivi K (2003) The origin and evolution of Archean lithospheric mantle. Precambrian Res 127:19–41

    Article  Google Scholar 

  • Gurney JJ, Harris JW, Rickard RS (1979) Silicate and oxide inclusions in diamonds from the Finsch kimberlite pipe. In: Boyd FR, Meyer HOA (eds) Kimberlites, diatremes, and diamonds: Their geology, petrology, and geochemistry. Am Geophys Union, pp 1–15

  • Gurney J, Harris J, Rickard R, Cardoso P (1986) Mineral inclusions in diamonds from Koffiefontein mine. Extended Abstracts, the Fourth Int Kimberlite Conference, pp 389−391

  • Harris J, Hawthorne J, Oosterveld M (1984) A comparison of diamond characteristics from the DeBeers pool mines, Kimberley, South Africa. Ann Sci Univ Clermont-Ferrand 74:1–13

    Google Scholar 

  • Heber VS, Brooker RA, Kelley SP, Wood BJ (2007) Crystal–melt partitioning of noble gases (helium, neon, argon, krypton, and xenon) for olivine and clinopyroxene. Geochim Cosmochim Ac 71:1041–1061

    Article  Google Scholar 

  • Hilton D, Hoogewerff J, Van Bergen M, Hammerschmidt K (1992) Mapping magma sources in the east Sunda-Banda arcs, Indonesia: constraints from helium isotopes. Geochim Cosmochim Ac 56:851–859

  • Hilton DR, Fischer TP, Marty B (2002) Noble gases and volatile recycling at subduction zones. Rev Mineral Geochem 47:319–370

    Article  Google Scholar 

  • Holland G, Ballentine CJ (2006) Seawater subduction controls the heavy noble gas composition of the mantle. Nature 441:186–191

    Article  Google Scholar 

  • Izraeli ES, Harris JW, Navon O (2001) Brine inclusions in diamonds: a new upper mantle fluid. Earth Planet Sc Lett 187:323–332

    Article  Google Scholar 

  • Izraeli ES, Harri JW, Navon O (2004) Fluid and mineral inclusions in cloudy diamonds from Koffiefontein, South Africa. Geochim Cosmochim Ac 68:2561–2575

    Article  Google Scholar 

  • Jablon BM, Navon O (2016) Most diamonds were created equal. Earth Planet Sc Lett 443:41–47

    Article  Google Scholar 

  • Jackson CR, Parman SW, Kelley SP, Cooper RF (2013) Constraints on light noble gas partitioning at the conditions of spinel-peridotite melting. Earth Planet Sc Lett 384:178–187

    Article  Google Scholar 

  • Javoy M, Pineau F, Staudacher T, Cheminee J, Krafft M (1989) Mantle volatiles sampled from a continental rift: the 1988 eruption of Oldoinyo Lengai (Tanzania), Terra 1, p 324

    Google Scholar 

  • Johnson L, Burgess R, Turner G, Milledge H, Harris J (2000) Noble gas and halogen geochemistry of mantle fluids: comparison of African and Canadian diamonds. Geochim Cosmochim Ac 64:717–732

    Article  Google Scholar 

  • Kendrick MA, Scambelluri M, Honda M, Phillips D (2011) High abundances of noble gas and chlorine delivered to the mantle by serpentinite subduction. Nat Geosci 4:807–812

    Article  Google Scholar 

  • Klein-BenDavid O, Izraeli ES, Hauri E, Navon O (2004) Mantle fluid evolution—a tale of one diamond. Lithos 77:243–253

    Article  Google Scholar 

  • Klein-BenDavid O, Izraeli ES, Hauri E, Navon O (2007) Fluid inclusions in diamonds from the Diavik mine, Canada and the evolution of diamond-forming fluids. Geochim Cosmochim Ac 71:723–744

    Article  Google Scholar 

  • Klein-BenDavid O, Logvinova AM, Schrauder M, Spetius ZV, Weiss Y, Hauri EH, Kaminsky FV, Sobolev NV, Navon O (2009) High-Mg carbonatitic microinclusions in some Yakutian diamonds—a new type of diamond-forming fluid. Lithos 112:648–659

    Article  Google Scholar 

  • Klein-BenDavid O, Pearson DG, Nowell GM, Ottley C, McNeill JCR, Cartigny P (2010) Mixed fluid sources involved in diamond growth constrained by Sr–Nd–Pb–C–N isotopes and trace elements. Earth Planet Sc Lett 289:123–133

    Article  Google Scholar 

  • Kurz MD, Gurney JJ, Jenkins WJ, Lott DE (1987) Helium isotopic variability within single diamonds from the Orapa kimberlite pipe. Earth Planet Sc Lett 86:57–68

    Article  Google Scholar 

  • Lee JY, Marti K, Severinghaus JP, Kawamura K, Yoo HS, Lee JB, Kim JS (2006) A redetermination of the isotopic abundances of atmospheric Ar. Geochim Cosmochim Ac 70:4507–4512

    Article  Google Scholar 

  • Mendelssohn M, Milledge H (1995) Geologically significant information from routine analysis of the mid-infrared spectra of diamonds. Int Geol Rev 37:95–110

    Article  Google Scholar 

  • Mohapatra RK, Honda M (2006) “Recycled” volatiles in mantle-derived diamonds—Evidence from nitrogen and noble gas isotopic data. Earth Planet Sc Lett 252:215–219

    Article  Google Scholar 

  • Moreira M, Kunz J, Allègre C (1998) Rare gas systematics in popping rock: isotopic and elemental compositions in the upper mantle. Science 279:1178–1181

    Article  Google Scholar 

  • Navon O (1999) Diamond formation in the Earth’s mantle. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) The J.B. Dawson Volume, Proceedings of the VIIth International Kimberlite Conference. Red Roof Design, Capetown, pp 584–604

    Google Scholar 

  • Navon O, Hutcheon I, Rossman G, Wasserburg G (1988) Mantle-derived fluids in diamond micro-inclusions. Nature 335:784–789

    Article  Google Scholar 

  • Ozima M, Zashu S (1991) Noble gas state of the ancient mantle as deduced from noble gases in coated diamonds. Earth Planet Sc Lett 105:13–27

    Article  Google Scholar 

  • Parman SW, Kurz MD, Hart SR, Grove TL (2005) Helium solubility in olivine and implications for high 3 He/4 He in ocean island basalts. Nature 437:1140–1143

    Article  Google Scholar 

  • Phillips D, Harris JW, Viljoen KS (2004) Mineral chemistry and thermobarometry of inclusions from De Beers Pool diamonds, Kimberley, South Africa. Lithos 77:155–179

    Article  Google Scholar 

  • Rapp RP, Timmerman S, Lowczak J, Jaques AL (2017) Metasomatism of cratonic lithosphere by hydrous, silica-rich fluids derived from recycled sediment: experimental insights at 5-7 GPa. Extended abstracts, the Eleventh Int Kimberlite conference, 4640, pp 1-3

  • Rickard RS, Harris JW, Gurney JJ, Cardoso P (1989) Mineral inclusions in diamonds from Koffiefontein Mine. In: Ross J et al (eds) Kimberlites and related rocks: Their mantle/crust setting, diamonds and diamond exploration. Geol Soc Australia Spec Publ 14 vol 2. Blackwells Scientific Press, Oxford, pp 1054–1062

    Google Scholar 

  • Sasada T, Hiyagon H, Bell K, Ebihara M (1997) Mantle-derived noble gases in carbonatites. Geochim Cosmochim Ac 61:4219–4228

    Article  Google Scholar 

  • Schrauder M, Koeberl C, Navon O (1996) Trace element analyses of fluid-bearing diamonds from Jwaneng, Botswana. Geochim Cosmochim Ac 60:4711–4724

    Article  Google Scholar 

  • Schrauder M, Navon O (1994) Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana. Geochim Cosmochim Ac 58:761–771

    Article  Google Scholar 

  • Smith CB, Allsop H, Kramers J, Hutchinson G, Roddick J (1985) Emplacement ages of Jurassic-Cretaceous South African kimberlites by the Rb-Sr method on phlogopite and whole-rock samples. Trans Geol Soc S Afr 88:249–266

    Google Scholar 

  • Stachel T, Harris J (2008) The origin of cratonic diamonds—constraints from mineral inclusions. Ore Geol Rev 34:5–32

    Article  Google Scholar 

  • Staudacher T, Allègre CJ (1982) Terrestrial xenology. Earth Planet Sc Lett 60:389–406

    Article  Google Scholar 

  • Staudacher T, Allègre CJ (1988) Recycling of oceanic crust and sediments: the noble gas subduction barrier. Earth Planet Sc Lett 89:173–183

    Article  Google Scholar 

  • Staudacher T, Sarda P, Richardson SH, Allègre CJ, Sagna I, Dmitriev LV (1989) Noble gases in basalt glasses from a Mid-Atlantic Ridge topographic high at 14°N: geodynamic consequences. Earth Planet Sc Lett 96:119–133

    Article  Google Scholar 

  • Stern RA, Palot M, Howell D, Stachel T, Pearson DG, Cartigny P, Oh A (2014) Methods and reference materials for SIMS diamond C-and N-isotope analysis. Canadian Centre for Isotopic Microanalysis, Research Report 14-01. University of Alberta, Education and Research Archive. http://hdl.handle.net/10402/era.38738

  • Stroncik NA, Haase KM (2004) Chlorine in oceanic intraplate basalts: Constraints on mantle sources and recycling processes. Geology 32:945–948

    Article  Google Scholar 

  • Sumino H, Kaneoka I, Matsufuji K, Sobolev AV (2006) Deep mantle origin of kimberlite magmas revealed by neon isotopes. Geophys Res Lett 33:L16318

    Article  Google Scholar 

  • Timmerman S, Jaques AL, Weiss Y, Harris JW (2018) N-δ13C-inclusion profiles of cloudy diamonds from Koffiefontein: Evidence for formation by continuous Rayleigh fractionation and multiple fluids. Chem Geol 483:31–46

    Article  Google Scholar 

  • Tolstikhin I, Kamenskii I, Sharkov I (1985) Isotopes of Light Inert Gases in Carbonates from the Kola Peninsula. Center Russian Acad Sci, Apatity

    Google Scholar 

  • Tomlinson E, Jones A, Harris J (2006) Co-existing fluid and silicate inclusions in mantle diamond. Earth Planet Sc Lett 250:581–595

    Article  Google Scholar 

  • Turner G, Burgess R, Bannon M (1990) Volatile-rich mantle fluids inferred from inclusions in diamond and mantle xenoliths. Nature 344:653–655

    Article  Google Scholar 

  • Veksler IV, Dorfman AM, Dulski P, Kamenetsky VS, Danyushevsky LV, Jeffries T, Dingwell DB (2012) Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite. Geochim Cosmochim Ac 79:20–40

    Article  Google Scholar 

  • Wada N, Matsuda JI (1998) A noble gas study of cubic diamonds from Zaire: constraints on their mantle source. Geochim Cosmochim Ac 62:2335–2345

    Article  Google Scholar 

  • Weiss Y, Kiflawi I, Navon O (2010) IR spectroscopy: quantitative determination of the mineralogy and bulk composition of fluid microinclusions in diamonds. Chem Geol 275:26–34

    Article  Google Scholar 

  • Weiss Y, Griffin W, Navon O (2013) Diamond-forming fluids in fibrous diamonds: the trace-element perspective. Earth Planet Sc Lett 376:110–125

    Article  Google Scholar 

  • Weiss Y, Kiflawi I, Davies N, Navon O (2014) High-density fluids and the growth of monocrystalline diamonds. Geochim Cosmochim Ac 141:145–159

    Article  Google Scholar 

  • Weiss Y, McNeill J, Pearson DG, Nowell GM, Ottley CJ (2015) Highly saline fluids from a subducting slab as the source for fluid-rich diamonds. Nature 524:339–342

    Article  Google Scholar 

  • Weiss Y, Navon O, Goldstein SL, Harris JW (2018) Inclusions in diamonds constrain thermo-chemical conditions during Mesozoic metasomatism of the Kaapvaal cratonic mantle. Earth Planet Sc Lett 491:134–147

    Article  Google Scholar 

  • Wilding MC (1990) A study of diamonds with syngenetic inclusions. Unpublished PhD Thesis, Uni Edinburgh, 281 pp

  • Zedgenizov DA, Harte B, Shatsky VS, Politov AA, Rylov GM, Sobolev NV (2006) Directional chemical variations in diamonds showing octahedral following cuboid growth. Contrib Mineral Petrol 151:45–57

    Article  Google Scholar 

  • Zedgenizov DA, Ragozin AL, Shatsky VS, Araujo D, Griffin WL, Kagi H (2009) Mg and Fe-rich carbonate–silicate high-density fluids in cuboid diamonds from the Internationalnaya kimberlite pipe (Yakutia). Lithos 112:638–647

    Article  Google Scholar 

Download references

Acknowledgements

We thank Peter Holden (SHRIMP) and Xiaodong Zhang (VG5400) for their assistance with the analytical work. The authors acknowledge the facilities, and the scientific and technical assistance, of the Australian Microscopy and Microanalysis Research Facility at the Centre of Advanced Microscopy, The Australian National University. The Diamond Trading Company (a member of the DeBeers Group of Companies) is thanked for the donation of the diamonds used in this study to JWH. We thank Ray Burgess, Yaakov Weiss and editor Oded Navon for their helpful comments that greatly improved the presentation of this paper. This work was funded by the Australian Research Council (DP140101976) to MH, ALJ, DP, and Deborah Araujo, and AGRTP and Ringwood scholarships to ST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzette Timmerman.

Additional information

Editorial handling: O. Navon

Electronic supplementary material

ESM 1

(PDF 1240 kb)

ESM 2

(XLSX 69 kb)

ESM 3

(XLSX 1677 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timmerman, S., Honda, M., Phillips, D. et al. Noble gas geochemistry of fluid inclusions in South African diamonds: implications for the origin of diamond-forming fluids. Miner Petrol 112 (Suppl 1), 181–195 (2018). https://doi.org/10.1007/s00710-018-0603-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-018-0603-x

Keywords

Navigation