Skip to main content
Log in

The Unusual Magnetic Resonance Properties of Trigonal Prismatic Tc and Re Complexes

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The electron paramagnetic resonance (EPR) spectra of the trigonal prismatic complexes Tc(abt)3, Tc(bdt)3, Re(abt)3 and Re(bdt)3 (abt, O-aminobenzenethiol; bdt, benzene-1,2-dithiol) in dilute frozen solution are interpreted in terms of an axially symmetric spin Hamiltonian, with g values close to two, principal hyperfine couplings of |A Tc| ~ 5–12 × 10−4 cm−1, nuclear quadrupole couplings of |P Tc| ~ 0.3–0.35 × 10−4 cm−1 and the unusual values 5 × 10−4 cm−1 ~ |A Re zz | < |P Re| ~ |A Re xx | ~ |A Re yy | ~ 25 × 10−4 cm−1. Similar magnitudes of the parameters have been obtained by simulation of the previously published spectra of Re(pda)3, Re(tdt)3 and Re(pdt)3 (pda, O-phenylenediamine; tdt, toluene-3,4-dithiol; pdt, cis-1,2-diphenylethene-1,2-dithiol) by other authors. The unexpectedly large value of P relative to A is a common feature of all the Re tris-dithiolato and related trigonal prismatic complexes studied by EPR and is attributed to the high degree of delocalization of the unpaired electron onto the ligands and the distortion of the electron charge cloud. These factors are less evident in the complexes Tc(abt)3 and Tc(bdt)3. Intermolecular dipolar interactions, narrowed by weak exchange, are responsible for some of the spectral features observed in the solid state and concentrated (≫1 mM) frozen solutions, although there is no evidence for specific solute–solute interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Progress in Inorganic Chemistry, vol. 52, Dithiolene Chemistry: Synthesis, Properties, and Applications, ed. by K.D. Karlin, E.I. Steifel (Wiley, New York, 2004)

  2. F.J. Hine, A.J. Taylor, C.D. Garner, Coord. Chem. Rev. 254, 1570–1579 (2010)

    Article  Google Scholar 

  3. S.C. Drew, J.P. Hill, I. Lane, G.R. Hanson, R.W. Gable, C.G. Young, Inorg. Chem. 46, 2373–2387 (2007)

    Article  Google Scholar 

  4. S.C. Drew, C.G. Young, G.R. Hanson, Inorg. Chem. 46, 2388–2397 (2007)

    Google Scholar 

  5. S.C. Drew, G.R. Hanson, Inorg. Chem. 48, 2224–2232 (2009)

    Article  Google Scholar 

  6. M. Kawashima, M. Koyama, T. Fujinaga, J. Inorg. Nucl. Chem. 38, 801–805 (1976)

    Article  Google Scholar 

  7. R. Kirmse, J. Stach, H. Spies, Inorg. Chim. Acta 45, L251–L253 (1980)

    Article  Google Scholar 

  8. E.I. Steifel, H.B. Gray, J. Am. Chem. Soc. 87, 4012–4013 (1965)

    Article  Google Scholar 

  9. E.I. Steifel, R. Eisenberg, R.C. Rosenberg, H.B. Gray, J. Am. Chem. Soc. 88, 2956–2966 (1966)

    Article  Google Scholar 

  10. A.H. Al-Mowali, A.L. Porte, J. Chem. Soc. Dalton Trans., 250–252 (1975)

  11. J. Baldas, J.F. Boas, J. Bonnyman, J.R. Pilbrow, G.A. Williams, J. Am. Chem. Soc. 107, 1891–1896 (1985)

    Article  Google Scholar 

  12. A.A. Danopoulos, A.C.C. Wong, G. Wilkinson, M. Hursthouse, B. Hussain, J. Chem. Soc. Dalton Trans., 315–331 (1990)

  13. L.V. Borisova, O.D. Prasolova, G.A. Evtikova, I.N. Marov, Zh. Neorg, Khim. 35, 944–950 (1990)

    Google Scholar 

  14. U. Abram, R. Kirmse, Radiochim. Acta 63, 139–143 (1993)

    Google Scholar 

  15. A.H. Al-Mowali, A.L. Porte, J. Chem. Soc. Dalton Trans., 50–55 (1975)

  16. G.N. Schrauzer, V.P. Mayweg, J. Am. Chem. Soc. 88, 3235–3242 (1966)

    Article  Google Scholar 

  17. S.C. Drew, J. Baldas, J.F. Boas, Inorg. Chem. 49, 6799–6801 (2010)

    Article  Google Scholar 

  18. S. Sproules, F.L. Benedito, E. Bill, T. Weyhermuller, S. DeBeer George, K. Wieghardt, Inorg. Chem. 48, 10926–10941 (2009)

    Article  Google Scholar 

  19. J. Baldas, J.F. Boas, J. Bonnyman, M.F. Mackay, G.A. Williams, Aust. J. Chem. 35, 2413–2422 (1982)

    Article  Google Scholar 

  20. J.K. Gardner, N. Pariyadath, J.L. Corbin, E.I. Steifel, Inorg. Chem. 17, 897–904 (1978)

    Article  Google Scholar 

  21. J.E. Wertz, J.W. Orton, P. Auzins, Faraday Discuss. 31, 140–150 (1961)

    Article  Google Scholar 

  22. G.R. Hanson, K.E. Gates, C.J. Noble, M. Griffin, A. Mitchell, S.J. Benson, J. Inorg. Biochem. 98, 903–916 (2004)

    Article  Google Scholar 

  23. P. Pyykkö, Mol. Phys. 99, 1617–1629 (2001)

    Article  ADS  Google Scholar 

  24. J. Baldas, J.F. Boas, G.A. Williams, Appl. Magn. Reson. 11, 499–508 (1996)

    Article  Google Scholar 

  25. J.R. Morton, K.F. Preston, J. Magn. Reson. 30, 577–582 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Simon C. Drew or John F. Boas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1. Phase memory times (T M) of Re(abt)3 (10 mM) measured as a function of magnetic field (blue circles). The red squares show the amplitude of the exponential fit to the two-pulse echo decay that was used to obtain T M. The phase memory time varies across the field range in which a detectable echo was generated and is shorter near the centre field compared with the shoulder features. Experimental parameters: microwave frequency, 9.70 GHz; temperature, 3 K; pulse sequence, t π/2–τ–t π–τ–echo; pulse lengths, t π/2 = t π/2 = 56 ns, τ incremented from 216 to 4280 ns in 16 ns steps; shots per loop, 50; averages, 10. Error bars depict errors reported from the mono-exponential fitting routine of Xepr.

Figure S2. Simulations showing the influence of varying the magnitude of P on the CW-EPR spectrum. The g and A matrices are the same as those used to simulate Re(bdt)3 (Table 3 and Fig. 2, main text), while P varies from (a) 0 × 10−4cm−1, (b) 6 × 10−4cm−1, (c) 12 × 10−4cm−1 and (d) 24 × 10−4cm−1. Grey lines show a 5× expansion of the ordinate in each instance.

Supplementary material 1 (EPS 133 kb)

Supplementary material 2 (EPS 354 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drew, S.C., Baldas, J. & Boas, J.F. The Unusual Magnetic Resonance Properties of Trigonal Prismatic Tc and Re Complexes. Appl Magn Reson 40, 427–440 (2011). https://doi.org/10.1007/s00723-011-0226-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-011-0226-4

Keywords

Navigation