Skip to main content

Advertisement

Log in

α-Synuclein and β-Amyloid form a Bridged Copper Complex

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The deposition of insoluble β-amyloid (Aβ) peptide into extracellular senile plaques is a pathological hallmark of Alzheimer’s disease. Fragmented α-synuclein (αSyn) and a relatively high concentration of Cu2+ ions are found within amyloid deposits. Both Aβ and αSyn bind Cu2+ with an apparent dissociation constant in the sub-nanomolar range at physiological pH, fuelling speculation that deleterious redox chemistry and metal-mediated protein misfolding may contribute to disease progression. Binary Cu(Aβ) and Cu(αSyn) complexes have been extensively studied, although the Cu2+ coordination of heterogeneous mixtures of Aβ and αSyn has yet to be characterised. This study used synthetic N-terminal fragments Aβ1–16 and αSyn1–56 to reveal a new Cu(αSyn)(Aβ) coordination mode anchored upon a 5,6-membered chelate supplied by Met1–Asp2 of αSyn, with the fourth equatorial ligand being supplied by a His side chain of Aβ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Iwai, E. Masliah, M. Yoshimoto, N. Ge, L. Fianagan, H.A. Rohan de Silva, A. Kittel, T. Saitoh, Neuron 14, 467–475 (1995)

    Article  Google Scholar 

  2. J.M. Shulman, P.L. De Jager, M.B. Feany, Annu. Rev. Pathol. Mech. Dis. 6, 193–222 (2011)

    Article  Google Scholar 

  3. M.G. Spillantini, M.L. Schmidt, V.M.-Y. Lee, J.Q. Trojanowski, R. Jakes, M. Goedert, Nature 388, 839–840 (1997)

    Article  ADS  Google Scholar 

  4. R. Borghi, R. Marchese, A. Negro, L. Marinelli, G. Forloni, D. Zaccheo, G. Abbruzzese, M. Tabaton, Neurosci. Lett. 287, 65–67 (2000)

    Article  Google Scholar 

  5. O.M.A. El-Agnaf, S.A. Salem, K.E. Paleologou, L.J. Cooper, N.J. Fullwood, M.J. Gibson, M.D. Curran, J.A. Court, D.M.A. Mann, S.-I. Ikeda, M.R. Cookson, J. Hardy, D. Allsop, FASEB J. 17, 1945–1947 (2003)

    Google Scholar 

  6. K. Ueda, H. Fukushima, E. Masliah, Y. Xia, A. Iwai, D. Otero, J. Kondo, Y. Ihara, T. Saitoh, Proc. Natl. Acad. Sci. USA 90, 11282–11286 (1993)

    Article  ADS  Google Scholar 

  7. M. Hashimoto, T. Takenouchi, M. Mallory, E. Masliah, A. Takeda, Am. J. Pathol. 156, 734–736 (2000)

    Article  MATH  Google Scholar 

  8. P.H. Jensen, P. Hojrup, H. Hager, M.S. Nielsen, L. Jacobsen, O.F. Olesen, J. Gliemann, R. Jakes, Biochem. J. 323, 539–546 (1997)

    Article  Google Scholar 

  9. V. Kallhoff, E. Peethumnongsin, H. Zheng, Mol. Neurodegen. 2, 6 (2007)

    Article  Google Scholar 

  10. B. Alies, E. Renaglia, M. Rózga, W. Bal, P. Faller, C. Hureau, Anal. Chem. 85, 1501–1508 (2013)

    Article  MATH  Google Scholar 

  11. C.G. Dudzik, E.D. Walter, G.L. Millhauser, Biochemistry 50, 1771–1777 (2011)

    Article  MATH  Google Scholar 

  12. K.J. Barnham, A.I. Bush, Curr. Opin. Chem. Biol. 12, 222–228 (2008)

    Article  Google Scholar 

  13. H. Kozlowski, M. Luczkowski, M. Remelli, D. Valensin, Coord. Chem. Rev. 256, 2129–2141 (2012)

    Article  Google Scholar 

  14. G.M. Moriarty, C.A.S.A. Minetti, D.P. Remeta, J. Baum, Biochemistry 53, 2815–2817 (2014)

    Article  Google Scholar 

  15. S.R. Paik, H.-J. Shin, J.-H. Lee, C.-S. Chang, J. Kim, Biochem. J. 340, 821–828 (1999)

    Article  Google Scholar 

  16. V.N. Uversky, J. Li, A.L. Fink, J. Biol. Chem. 276, 44284–44296 (2001)

    Article  Google Scholar 

  17. R.M. Rasia, C.W. Bertoncini, D. Marsh, W. Hoyer, D. Cherny, M. Zweckstetter, C. Griesinger, T.M. Jovin, C.O. Fernández, Proc. Nat. Acad. Sci. USA 102, 4294–4299 (2005)

    Article  ADS  Google Scholar 

  18. D.P. Smith, D.G. Ciccotosto, D.J. Tew, M.T. Fodero-Tavoletti, T. Johanssen, C.L. Masters, K.J. Barnham, R. Cappai, Biochemistry 46, 2881–2891 (2007)

    Article  Google Scholar 

  19. J.T. Pedersen, J. Østergaard, N. Rozlosnik, B. Gammelgaard, N.H.H. Heegaard, J. Biol. Chem. 286, 26952–26963 (2011)

    Article  Google Scholar 

  20. J.A. Wright, X. Wang, D.R. Brown, FASEB J. 23, 2384–2393 (2009)

    Article  Google Scholar 

  21. S.C. Drew, K.J. Barnham, Acc. Chem. Res. 44, 1146–1155 (2011)

    Article  Google Scholar 

  22. I. Zawisza, M. Rozga, W. Bal, Coord. Chem. Rev. 256, 2297–2307 (2012)

    Article  Google Scholar 

  23. M. Rowinska-Zyrek, M. Salerno, H. Kozlowski, Coord. Chem. Rev. 284, 298–312 (2015)

    Article  Google Scholar 

  24. P. Faller, C. Hureau, G. La Penna, Acc. Chem. Res. 47, 2252–2259 (2014)

    Article  Google Scholar 

  25. R.M.C. Dawson, D.C. Elliot, W.H. Elliot, K.M. Jones, Data for Biochemical Research, 3rd edn. (Oxford University Press, New York, 1986), pp. 26–27

    Google Scholar 

  26. C.N. Pace, F. Vajdos, L. Fee, G. Grimsley, T. Gray, Protein Sci. 4, 2411–2423 (1995)

    Article  MATH  Google Scholar 

  27. S. Stoll, A. Schweiger, J. Magn. Reson. 178, 42–55 (2006)

    Article  ADS  MATH  Google Scholar 

  28. J.S. Hyde, W. Froncisz, Ann. Rev. Biophys. Bioeng. 11, 391–417 (1982)

    Article  MATH  Google Scholar 

  29. S.C. Drew, S.L. Leong, C.L.L. Pham, D.J. Tew, C.L. Masters, L.A. Miles, R. Cappai, K.J. Barnham, J. Am. Chem. Soc. 130, 7766–7773 (2008)

    Article  Google Scholar 

  30. A. Binolfi, E.E. Rodriguez, D. Valensin, N. D’Amelio, E. Ippoliti, G. Obal, R. Duran, A. Magistrato, O. Pritsch, M. Zweckstetter, G. Valensin, P. Carloni, L. Quintanar, C. Griesinger, C.O. Fernández, Inorg. Chem. 49, 10668–10679 (2010)

    Article  MATH  Google Scholar 

  31. S.C. Drew, D.J. Tew, C.L. Masters, R. Cappai, K.J. Barnham, Appl. Magn. Reson. 36, 223–229 (2009)

    Article  Google Scholar 

  32. S.C. Drew, C.J. Noble, C.L. Masters, G.R. Hanson, K.J. Barnham, J. Am. Chem. Soc. 131, 1195–1207 (2009)

    Article  Google Scholar 

  33. P. Dorlet, S. Gambarelli, P. Faller, C. Hureau, Angew. Chem. Int. Ed. 48, 9273–9276 (2009)

    Article  MATH  Google Scholar 

  34. W.A. Gunderson, J. Hernández-Guzmán, J.W. Karr, L. Sun, V.A. Szalai, K. Warncke, J. Am. Chem. Soc. 134, 18330–18337 (2012)

    Article  Google Scholar 

  35. W.S. Davidson, A. Jonas, D.F. Clayton, J.M. George, J. Biol. Chem. 273, 9443–9449 (1998)

    Article  Google Scholar 

  36. J. Lotharius, P. Brundin, Nat. Rev. Neurosci. 3, 932–942 (2002)

    Article  Google Scholar 

  37. O. Khalaf, B. Fauvet, A. Oueslati, I. Dikiy, A.L. Mahul-Mellier, F.S. Ruggeri, M. Mbefo, F. Vercruysse, G. Dietler, S.J. Lee, D. Eliezer, H.A. Lashuel, J. Biol. Chem. 289, 21856–21876 (2014)

    Article  MATH  Google Scholar 

  38. S.C. Drew, WM. Kok, C.A. Hutton, KJ. Barnham, Appl. Magn. Reson. 44, 927–939 (2013); erratum in Appl. Magn. Reson. 45, 621 (2014)

  39. D.R. Brown, Biochem. Biophys. Res. Commun. 380, 377–381 (2009)

    Article  Google Scholar 

  40. Y. Sung, C. Rospigliosi, D. Eliezer, Biochim. Biophys. Acta 1764, 5–12 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by a Fellowship (FT110100199) administered by the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon C. Drew.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drew, S.C. α-Synuclein and β-Amyloid form a Bridged Copper Complex. Appl Magn Reson 46, 1041–1052 (2015). https://doi.org/10.1007/s00723-015-0662-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-015-0662-7

Keywords

Navigation