Skip to main content

Advertisement

Log in

Modular High-Intensity Monochromatic In Situ Illumination Set-Up for Investigating ESR Photoactive Centers in Semiconductors

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

A versatile, modular in situ high-intensity monochromatic illumination set-up installed on a standard Q-band ESR spectrometer equipped with a cryostat and probe head for measurements at cryogenic temperatures, which can be easily assembled from commercially available optical components is presented. Using as monochromatic light sources pig-tailed laser diodes (LDs) or fiber-coupled light-emitting diodes (LEDs), a high efficiency of the light transfer (more than 95%) through an optical guide inserted in the sample holder is achieved in the sample area of the microwave cavity. With various LEDs and LDs, one can perform ESR in situ illumination experiments from UV to far-IR, in both cw and pulse mode. Its operation is illustrated with an experiment revealing the presence of certain ESR silent defects in oxygen-doped floating-zone ultrapure Si samples irradiated at room temperature with high-energy–high-fluence electron beams and pulse annealed up to 300 °C. New information is obtained by comparing the ESR spectra recorded at T = 120 K, without and with 1.06 µm across-the-gap in situ illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford, 1970)

    Google Scholar 

  2. J. Weil, J.R. Bolton, J.E. Wertz, Electron Paramagnetic Resonance (Wiley, New York, 1994)

    Google Scholar 

  3. S.V. Nistor, D. Schoemaker, I. Ursu, Phys. Stat. Sol. (b) 185, 1–67 (1994)

    Article  ADS  Google Scholar 

  4. G. D. Watkins, in Semiconductors and Semimetals, ed. M. Stavola, vol 51A (Acad. Press, San Diego, 1999), 51A, p. 93

  5. J. M. Spaeth, H. Overhof, Point Defects in Semiconductors and Insulators, Springer Series in Materials Science, 51, eds. R. Hull, R. M. Osgood and J. Parisi, (Springer, Berlin, 2003)

  6. M. Stefan, S. V. Nistor, D. Ghica, in Size Effects in Nanostructures, authors V. Kuncser, L. Miu, Eds. Springer Series in Materials Science, 205, Part.1, (Springer, Berlin, Heidelberg, 2014), , pp. 3–27

  7. P. G. Baranov, H. J. Von Bardeleben, F. Jelezko, J. Wachtrup, Magnetic resonance of semiconductors and their nanostructures. Basic and Advanced Applications, Springer Series in Materials Science, 253, (Springer Verlag GmbH, Austria, 2017)

    Book  Google Scholar 

  8. S.V. Nistor, E. Goovaerts, D. Schoemaker, Rad. Eff. Def. Solids 136, 157–161 (1995)

    Article  Google Scholar 

  9. M. Iwanaga, J. Azuma, M. Shirai, K. Tanaka, T. Hayashi, Phys. Rev. B 65, 214306 (2002)

    Article  ADS  Google Scholar 

  10. T. Umeda, S. Hagiwara, M. Katagiri, N. Mizuochi, J. Isoya, Phys. B 376–377, 249–252 (2006)

    Article  ADS  Google Scholar 

  11. S.V. Nistor, D. Ghica, I. Pintilie, E. Manaila, Rom. Repts. Phys. 65(3), 825–831 (2013)

    Google Scholar 

  12. A.C. Joita, S.V. Nistor, Mater. Sci. Semicond. Process. 83, 1–11 (2018)

    Article  Google Scholar 

  13. A.C. Joita, S.V. Nistor, J. Appl. Phys. 123(16), 161531 (2018). (1-9)

    Article  ADS  Google Scholar 

  14. X.D. Zhan, G.D. Watkins, Phys. Rev. B 47(11), 6363–6379 (1993)

    Article  ADS  Google Scholar 

  15. W. Gehlhoff, R.N. Pereira, D. Azamat, A. Hoffmann, N. Dietz, Phys. B 308–310, 1015–1019 (2001)

    Article  ADS  Google Scholar 

  16. R.N. Pereira, W. Gehlhof, A.J. Neves, N.A. Sobolev, J. Phys. Cond. Mater. 15, 2493–2505 (2003)

    Article  ADS  Google Scholar 

  17. S.V. Nistor, M. Stefan, D. Ghica, E. Goovaerts, Appl. Magn. Res. 39(1–2), 87–101 (2010)

    Article  Google Scholar 

  18. S.V. Nistor, M. Stefan, D. Ghica, J. Therm. Anal. Calorim. 118(2), 1021–1031 (2014)

    Article  Google Scholar 

  19. L.J. Chang, J.C. Corelli, J.W. Corbett, G.D. Watkins, Phys. Rev. 152(2), 761–774 (1966)

    Article  ADS  Google Scholar 

  20. G.D. Watkins, J.W. Corbett, Phys. Rev. 138(2A), 543–555 (1965)

    Article  ADS  Google Scholar 

  21. K.L. Brower, Phys. Rev. B 4(6), 1968–1982 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Trombetta, G.D. Watkins, Appl. Phys. Lett. 51(14), 1103–1105 (1987)

    Article  ADS  Google Scholar 

  23. J. Coutinho, R. Jones, P.R. Briddon, S. Oberg, L.I. Murin, V.P. Markevich, J.L. Lindstroem, Phys. Rev. B 65, 014109-1–014109-11 (2001)

    Article  ADS  Google Scholar 

  24. Y.H. Lee, J.W. Corbett, Phys. Rev. B 9(10), 4351–4361 (1974)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Romanian Ministry of Research and Innovation [project PN-III-P4-ID-PCE-2016 no. 152/2017]. The authors are grateful to Ioana Pintilie for providing the electron irradiated DOFZ silicon single-crystal platelets and to Dan Zernescu for technical assistance in the ESR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergiu V. Nistor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nistor, S.V., Joita, A.C. Modular High-Intensity Monochromatic In Situ Illumination Set-Up for Investigating ESR Photoactive Centers in Semiconductors. Appl Magn Reson 51, 287–296 (2020). https://doi.org/10.1007/s00723-019-01183-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-019-01183-z

Navigation