Skip to main content

Advertisement

Log in

X-ray crystal structure of CMS1MS2: a high proteolytic activity cysteine proteinase from Carica candamarcensis

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

CMS1MS2 (CC-Ib) from Carica candamarcensis (Vasconcellea cundinamarcensis) is a cysteine proteinase found as a single polypeptide containing 213 residues of 22,991 Da. The enzyme was purified by three chromatographic steps, two of them involving cationic exchange. Crystals of CMS1MS2 complexed with E-64 were obtained by the hanging drop vapor-diffusion method at 291 K using ammonium sulfate and polyethylene glycol 4000/8000 as precipitant. The complex CMS1MS2-E-64 crystallized in the tetragonal space group P41212 with unit-cell parameters; a = b = 73.64, c = 118.79 Å. The structure was determined by Molecular Replacement and refined at 1.87 Å resolution to a final R factor of 16.2 % (R free = 19.3 %). Based on the model, the structure of CMS1MS2 (PDB 3IOQ) ranks as one of the least basic cysteine isoforms from C. candamarcensis, is structurally closer to papain, caricain, chymopapain and mexicain than to the other cysteine proteinases, while its activity is twice the activity of papain towards BAPNA substrate. Two differences, one in the S2 subsite and another in the S3 subsite of CMS1MS2 may contribute to the enhanced activity relative to papain. In addition, the model provides a structural basis for the sensitivity of CMS1MS2 to inhibition by cystatin, not shown by other enzymes of the group, e.g., glycyl endopeptidase and CMS2MS2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arroyo-Reyna A, Hernandez-Arana A, Arreguin-Espinosa R (1994) Circular dichroism of stem bromelain: a third spectral class within the family of cysteine proteinases. Biochem J 300:107–110

    PubMed  CAS  Google Scholar 

  • Ayello E, Cuddigan JE (2004) Debridement: controlling the necrotic/cellular burden. Adv Skin Wound Care 17:66–75

    Article  PubMed  Google Scholar 

  • Azarkan M, Dibiani R, Baulard C, Baeyens-Volant D (2006) Effects of mechanical wounding on Carica papaya cysteine endopeptidases accumulation and activity. Int J Biol Macromol 38:216–224

    Article  PubMed  CAS  Google Scholar 

  • Báez R, Lopes MT, Salas CE, Hernández M (2007) In vivo antitumoral activity of stem pineapple (Ananas comosus) bromelain. Planta Med 73:1377–1383

    Article  PubMed  Google Scholar 

  • Baeza G, Correa D, Salas CE (1990) Proteolytic enzymes in C. candamarcensis. J Sci Food Agric 51:1–9

    Article  CAS  Google Scholar 

  • Baker EL, Baker WL, Cloney DJ (2007) Resolution of a phytobezoar with Aldoph’s Meat Tenderizer. Pharmacother 27:299–302

    Article  CAS  Google Scholar 

  • Barrett AJ, Buttle DJ (1985) Names and numbers of papaya proteinases. Biochem J 228:527

    PubMed  CAS  Google Scholar 

  • Batkin S, Taussig S, Szekerczes J (1988) Modulation of pulmonary metastasis (Lewis lung carcinoma) by bromelain, an extract of the pineapple stem (Ananas comosus). Cancer Invest 6:241–242

    Article  PubMed  CAS  Google Scholar 

  • Bode W, Engh R, Musil D, Thiele U, Huber R, Karshikov A, Brzin J, Kos J, Turk V (1988) The 2.0 A X-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases. EMBO J 7:2593–2599

    PubMed  CAS  Google Scholar 

  • Bravo LM, Hermosilla L, Salas CE (1994) A biochemical comparison between latex from C. candamarcensis and C. papaya. Braz J Med Biol Res 26:2831–2842

    Google Scholar 

  • Brien S, Lewith G, Walker A, Hicks S, Middleton D (2004) Bromelain as a Treatment for Osteoarthritis: a Review of Clinical Studies. Evid Based Complement Alternat Med 1:251–257

    Article  PubMed  Google Scholar 

  • Cabral H, Leopoldino AM, Tajara EH, Greene LJ, Faça VM, Mateus RP, Ceron CR, de Souza Judice WA, Juliano L, Bonilla-Rodriguez GO (2006) Preliminary functional characterization, cloning and primary sequence of Fastuosain, a cysteine peptidase isolated from fruits of Bromelia fastuosa. Protein Pept Lett 13:83–89

    Article  PubMed  CAS  Google Scholar 

  • CCP4 Program Suite 6.0.2 (1994) Collaborative computational project number 4. Acta Cryst D50:760–763

    Google Scholar 

  • Chobotova K, Vernallis AB, Majid FA (2010) Bromelain’s activity and potential as an anti-cancer agent: Current evidence and perspectives. Cancer Lett 290:148–156

    Article  PubMed  CAS  Google Scholar 

  • Corrêa NC, Mendes IC, Gomes MT, Kalapothakis E, Chagas BC, Lopes MT, Salas CE (2011) Molecular cloning of a mitogenic proteinase from Carica candamarcensis: its potential use in wound healing. Phytochemistry 72:1947–1954

    Article  PubMed  Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, Palo Alto, CA, USA. http://www.pymol.org

  • Drenth J, Jansonius JN, Koekoek R, Swen HM, Wolthers BG (1968) Structure of papain. Nature (London) 218:929–932

    Article  CAS  Google Scholar 

  • Dubois T, Kleinschmidt T, Schnek AG, Looze Y, Braunitzer G (1988) The thiol proteinases from the latex of Carica papaya L.: the primary structure of proteinase omega. Biol Chem Hoppe-Seyler 369:741–754

    Article  PubMed  CAS  Google Scholar 

  • Ford CN, Reinhard ER, Yeh D, Syrek D, De Las Morenas A, Bergman SB, Williams S, Hamori CA (2002) Interim analysis of a prospective, randomized trial of vacuum-assisted closure versus the healthpoint system in the management of pressure ulcers. Ann Plast Surg 49:55–61

    Article  PubMed  Google Scholar 

  • Furie B, Furie BC (1988) The molecular base of blood coagulation. Cell 53:505–518

    Article  PubMed  CAS  Google Scholar 

  • Gaspani L, Limiroli E, Ferrario P, Bianchi M (2002) In vivo and in vitro effects of bromelain on PGE(2) and SP concentrations in the inflammatory exudate in rats. Pharmacol 65:83–86

    Article  CAS  Google Scholar 

  • Gass J, Bethune MT, Siegel M, Spencer A, Khosla C (2007) Combination enzyme therapy for gastric digestion of dietary gluten in patients with celiac sprue. Gastroenterol 133:472–480

    Article  CAS  Google Scholar 

  • Gavira JA, Gonzalez-Ramirez LA, Oliver-Salvador MC, Soriano-Garcia M, Garcia-Ruiz JM (2007) Structure of the mexicain-E-64 complex and comparison with other cysteine proteases of the papain family. Acta Cryst D63:555–563

    CAS  Google Scholar 

  • Gomes MTR, Mello VJ, Rodrigues KC, Bemquerer MP, Lopes MTP, Faça VM, Salas CE (2005) Isolation of two plant proteinases in latex from Carica candamarcensis acting as mitogens for mammalian cells. Planta Med 71:244–248

    Article  PubMed  CAS  Google Scholar 

  • Gomes MTR, Bemquerer MP, Lopes MTP, Richardson M, Oyama S, Salas CE (2007) The structure of CMS2MS2, a mitogenic protein isolated from latex of Carica candamarcensis. Biol Chem 388:819–822

    Article  PubMed  CAS  Google Scholar 

  • Gomes MT, Teixeira RD, Ribeiro H, Turchetti AP, Junqueira CF, Lopes MT, Salas CE, Nagem RA (2008) Purification, crystallization and preliminary X-ray analysis of CMS1MS2: a cysteine proteinase from Carica candamarcensis latex. Acta Cryst F64:492–494

    CAS  Google Scholar 

  • Gomes FS, Spínola CV, Ribeiro HA, Lopes MT, Cassali GD, Salas CE (2010a) Wound-healing activity of a proteolytic fraction from Carica candamarcensis on experimentally induced burn. Burns 36:277–283

    Article  PubMed  Google Scholar 

  • Gomes MT, Ribeiro HA, Lopes MT, Guzman F, Salas CE (2010b) Biochemical comparison of two proteolytic enzymes from Carica candamarcensis: structural motifs underlying resistance to cystatin inhibition. Phytochemistry 71:524–530

    Article  PubMed  CAS  Google Scholar 

  • Grabowska E, Eckert K, Fichtner I, Schulze-Forster K, Maurer H (1997) Bromelain proteases suppress growth invasion and lung metastasis of B16F10 mouse melanoma cells. Int J Oncol 11:243–248

    PubMed  CAS  Google Scholar 

  • Gravina de Moraes M, Termignoni C, Salas CE (1994) Biochemical characterization of a new cysteine endopeptidase from Carica candamarcensis L. Plant Sci 102:11–18

    Article  Google Scholar 

  • Grzonka Z, Jankowska E, Kasprzykowski F, Kasprzykowska R, Lankiewicz L, Wiczk W, Wieczerzak E, Ciarkowski J, Drabik P, Janowski R, Kozak M, Jaskólski M, Grubb (2001) Structural studies of cysteine proteases and their inhibitors. Acta Biochim Pol 48:1–20

    PubMed  CAS  Google Scholar 

  • Heinig M, Frishman D (2004) STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins. Nucl Acids Res 32:W500–W502

    Article  PubMed  CAS  Google Scholar 

  • Janowski R, Kozak M, Jankowska E, Grzonka Z, Jaskólski M (2004) Two polymorphs of a covalent complex between papain and a diazomethylketone inhibitor. J Pept Res 64:141–150

    Article  PubMed  CAS  Google Scholar 

  • Kyndt T, Van Damme EJ, Van Beeumen J, Gheysen G (2007) Purification and characterization of the cysteine proteinases in the latex of Vasconcellea spp. FEBS J 274:451–462

    Article  PubMed  CAS  Google Scholar 

  • Maes D, Bouckaert J, Poortmans F, Wyns L, Looze Y (1996) Structure of chymopapain at 1.7 A resolution. Biochemistry 35:16292–16298

    Article  PubMed  CAS  Google Scholar 

  • Melano E, Rodriguez HL, Carrillo R Jr, Dillon L (2004) The effects of Panafil when using topical negative pressure to heal an infected sternal wound. J Wound Care 13:425–426

    PubMed  CAS  Google Scholar 

  • Mello VJ, Gomes MTR, Rodrigues KCL, Sanchez EF, Lopes MTP, Salas CE (2006) In: Govil JN, Singh VK, Arunachalam C (eds) Recent progress in medicinal plants Drug development from molecules, vol 11. Studium Press, LLC, Houston, USA, pp 211–224

  • Mello VJ, Gomes MTR, Lemos FO, Delfino JL, Andrade SP, Lopes MTP, Salas CE (2008) The gastric ulcer protective and healing role of cysteine proteinases from Carica candamarcensis. Phytomed 15:237–244

    Article  Google Scholar 

  • Mitchel REJ, Chaiken IM, Smith EL (1970) The complete amino acid sequence of papain. J Biol Chem 245:3485–3492

    PubMed  CAS  Google Scholar 

  • Morris AL, MacArthur MW, Hutchinson EG, Thornton JM (1992) Stereochemical quality of protein structure coordinates. Proteins 12:345–364

    Article  PubMed  CAS  Google Scholar 

  • Moutim V, Silva LG, Lopes MTP, Wilson-Fernandes G, Salas CE (1999) Spontaneous processing of peptides during coagulation of latex from Carica papaya. Plant Sci 142:115–121

    Article  CAS  Google Scholar 

  • Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Cryst D53:240–255

    CAS  Google Scholar 

  • Mynott TL, Ladhams A, Scarmato P, Engwerda CR (1999) Bromelain, from pineaple stems, proteolytically blocks activation of extracellular regulated kinase-2 in T cells. J Immunol 163:2568–2575

    PubMed  CAS  Google Scholar 

  • Navaza J (1994) AMoRe: an automated package for molecular replacement. Acta Cryst A50:157–163

    CAS  Google Scholar 

  • O’Hara BP, Hemmings AM, Buttle DJ, Pearl LH (1995) Crystal structure of glycyl endopeptidase from Carica papaya: a cysteine endopeptidase of unusual substrate specificity. Biochemistry 34:13190–13195

    Article  PubMed  Google Scholar 

  • Otwinowski Z, Minor W (1997) Processing of X-ray Diffraction Data Collected in Oscillation Mode. Methods Enzymol 276:307–326

    Article  CAS  Google Scholar 

  • Pereira MT, Lopes MT, Meira O, Salas CE (2001) Purification of a cysteine proteinase from Carica candamarcensis L and cloning of a genomic putative fragment coding for this enzyme. Protein Expr Purif 22:249–257

    Article  PubMed  CAS  Google Scholar 

  • Pickersgill RW, Sumner IG, Goodenough PW (1990) Preliminary crystallographic data for protease omega. Eur J Biochem 190:443–444

    Article  PubMed  CAS  Google Scholar 

  • Rawlings ND, Barrett AJ (1993) Evolutionary families of peptidases. Biochem J 290:205–218

    PubMed  CAS  Google Scholar 

  • Ritonja A, Buttle DJ, Rawlings ND, Turk V, Barrett AJ (1989) Papaya proteinase IV aminoacid sequence. FEBS Lett 258:109–112

    Article  PubMed  CAS  Google Scholar 

  • Schwede T, Kopp J, Juex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  PubMed  CAS  Google Scholar 

  • Silva LG, Garcia O, Lopes MTP, Salas CE (1997) Changes in protein profile during coagulation of latex from Carica papaya. Braz J Med Biol Res 30:615–619

    PubMed  CAS  Google Scholar 

  • Silva CA, Gomes MTR, Ferreira RS, Rodrigues KCL, do Val CG, Lopes MTP, Mello VJ, Salas CE (2003) A mitogenic protein fraction in latex from Carica candamarcensis. Planta Med 69:926–932

    Google Scholar 

  • Solís-Mendiola S, Arroyo-Reyna A, Hernández-Arana A (1992) Circular dichroism of cysteine proteinases from papaya latex. Evidence of differences in the folding of their polypeptide chains. Biochim Biophys Acta 1118:288–292

    Article  PubMed  Google Scholar 

  • Soplin SP, Millones EA, Campos JLA, Deza LG, Rios EJ, Sanchez IB, Benítez MR, Pando LG, Panizo RS, Merino C del C, Rivera SJC (1996) Informe Nacional para la Conferencia Técnica Internacional de FAO sobre los Recursos Fitogenéticos

  • Sreerama N, Woody RW (1993) A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal Biochem 209:32–44

    Article  PubMed  CAS  Google Scholar 

  • Stepek G, Lowe AE, Buttle DJ, Duce IR, Behnke JM (2006) In vitro and in vivo anthelmintic efficacy of plant cysteine proteinases against the rodent gastrointestinal nematode. Parasitol 132:681–689

    CAS  Google Scholar 

  • Teixeira RD, Ribeiro HA, Gomes MT, Lopes MT, Salas CE (2008) The proteolytic activities in latex from Carica candamarcensis. Plant Physiol Biochem 46:956–961

    Article  PubMed  CAS  Google Scholar 

  • Varughese KI, Su Y, Cromwell D, Hasnain S, Xuong NH (1992) Crystal structure of an actinidin-E-64 complex. Biochemistry 31:5172–5176

    Article  PubMed  CAS  Google Scholar 

  • Wald M, Závadová E, Poucková P, Zadinová M, Boubelik M (1998) Polyenzyme preparation Wobe-Mugos inhibits growth of solid tumors and development of experimental metastases in mice. Life Sci 62:43–48

    Google Scholar 

  • Wald M, Olejár T, Sebková V, Zadinová M, Boubelík M, Poucková P (2001) Mixture of trypsin, chymotrypsin and papain reduces formation of metastases and extends survival time of C57Bl6 mice with syngeneic melanoma B16. Cancer Chemother Pharmacol 47:S16–S22

    Article  PubMed  CAS  Google Scholar 

  • Walraevens V, Vandermeers-Piret MC, Vandermeers A, Gourlet P, Robberecht P (1999) Isolation and primary structure of the CCI papain-like cysteine proteinases from the latex of Carica candamarcensis hook. Biol Chem 380:485–488

    Article  PubMed  CAS  Google Scholar 

  • Walreavens V, Jaziri M, Van Beeumen J, Schneck AG, Kleinschmidt T, Looze Y (1993) Isolation and preliminary characterization of the cysteine-proteinases from the latex of Carica candamarcensis Hook. Biol Chem Hoppe-Seyler 374:501–506

    Article  PubMed  CAS  Google Scholar 

  • Watson C, Yaguchi M, Lynn KR (1990) The aminoacid sequence of chymopapain from Carica papaya. Biochem J 266:75–81

    PubMed  CAS  Google Scholar 

  • Zhao B, Janson CA, Amegadzie BY, D’Alessio K, Griffin C, Hanning CR, Jones C, Kurdyla J, McQueney M, Qiu X, Smith WW, Abdel-Meguid SS (1997) Crystal structure of human osteoclast cathepsin K complex with E-64. Nat Struct Biol 4:109–111

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research was funded by CNPq, CAPES and Fapemig. We thank Dr. Abraham Schnaiderman for his financial aid to this research and the Brazilian Synchrotron Light Laboratory (LNLS) for providing access to their facilities for X-ray crystallography experiments. Each author confirms that there is no conflict of interest in connection with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos E. Salas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomes, M.T.R., Teixeira, R.D., Lopes, M.T.P. et al. X-ray crystal structure of CMS1MS2: a high proteolytic activity cysteine proteinase from Carica candamarcensis . Amino Acids 43, 2381–2391 (2012). https://doi.org/10.1007/s00726-012-1318-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1318-7

Keywords

Navigation