Skip to main content
Log in

eIF5A dimerizes not only in vitro but also in vivo and its molecular envelope is similar to the EF-P monomer

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The protein eukaryotic initiation factor 5A (eIF5A) is highly conserved among archaea and eukaryotes, but not in bacteria. Bacteria have the elongation factor P (EF-P), which is structurally and functionally related to eIF5A. eIF5A is essential for cell viability and the only protein known to contain the amino acid residue hypusine, formed by post-translational modification of a specific lysine residue. Although eIF5A was initially identified as a translation initiation factor, recent studies strongly support a function for eIF5A in the elongation step of translation. However, the mode of action of eIF5A is still unknown. Here, we analyzed the oligomeric state of yeast eIF5A. First, by using size-exclusion chromatography, we showed that this protein exists as a dimer in vitro, independent of the hypusine residue or electrostatic interactions. Protein–protein interaction assays demonstrated that eIF5A can form oligomers in vitro and in vivo, in an RNA-dependent manner, but independent of the hypusine residue or the ribosome. Finally, small-angle X-ray scattering (SAXS) experiments confirmed that eIF5A behaves as a stable dimer in solution. Moreover, the molecular envelope determined from the SAXS data shows that the eIF5A dimer is L-shaped and superimposable on the tRNAPhe tertiary structure, analogously to the EF-P monomer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bailly M, de Crécy-Lagard V (2010) Predicting the pathway involved in post-translational modification of elongation factor P in a subset of bacterial species. Biol Direct 5:3

    Article  PubMed  Google Scholar 

  • Batista FA, Goto LS, Garcia W, de Moraes DI, de Oliveira Neto M, Polikarpov I, Cominetti MR, Selistre-de-Araújo HS, Beltramini LM, Araújo AP (2010) Camptosemin, a tetrameric lectin of Camptosema ellipticum: structural and functional analysis. Eur Biophys J 39(8):1193–1205

    Article  PubMed  CAS  Google Scholar 

  • Benne R, Hershey JW (1978) The mechanism of action of protein synthesis initiation factors from rabbit reticulocytes. J Biol Chem 253(9):3078–3087

    PubMed  CAS  Google Scholar 

  • Blaha G, Stanley RE, Steitz TA (2009) Formation of the first peptide bond: the structure of EF-P bound to the 70S ribosome. Science 325(5943):966–970

    Article  PubMed  CAS  Google Scholar 

  • Chen KY, Liu AY (1997) Biochemistry and function of hypusine formation on eukaryotic initiation factor 5A. Biol Signals 6(3):105–109

    Article  PubMed  CAS  Google Scholar 

  • Choi S, Choe J (2011) Crystal structure of elongation factor P from Pseudomonas aeruginosa at 1.75 A resolution. Proteins 79(5):1688–1693

    Article  PubMed  CAS  Google Scholar 

  • Chung SI, Park MH, Folk JE, Lewis MS (1991) Eukaryotic initiation factor 5A: the molecular form of the hypusine-containing protein from human erythrocytes. Biochim Biophys Acta 1076(3):448–451

    Article  PubMed  CAS  Google Scholar 

  • Delano WL (2002) The PyMOL molecular graphics system delano scientific

  • Dias CA, Cano VS, Rangel SM, Apponi LH, Frigieri MC, Muniz JR, Garcia W, Park MH, Garratt RC, Zanelli CF, Valentini SR (2008) Structural modeling and mutational analysis of yeast eukaryotic translation initiation factor 5A reveal new critical residues and reinforce its involvement in protein synthesis. FEBS J 275(8):1874–1888

    Article  PubMed  CAS  Google Scholar 

  • Dias CA, Gregio APB, Rossi D, Galvão FC, Watanabe TF, Park MH, Valentini SR, Zanelli CF (2012) eIF5A interacts functionally with eEF2. Amino Acids 42(2–3):697–702

    Article  PubMed  CAS  Google Scholar 

  • Fischer H, de Oliveira Neto M, Napolitano HB, Polikarpov I, Craievich AF (2010) Determination of the molecular weight of proteins in solution from single small-angle X-ray scattering measurement on a relative scale. J Appl Cryst 43:101–109

    Article  CAS  Google Scholar 

  • Frigieri MC, Thompson GM, Pandolfi JR, Zanelli CF, Valentini SR (2007) Use of a synthetic lethal screen to identify genes related to TIF51A in Saccharomyces cerevisiae. Genet Mol Res 6(1):152–165

    PubMed  CAS  Google Scholar 

  • Frigieri MC, Joao Luiz MV, Apponi LH, Zanelli CF, Valentini SR (2008) Synthetic lethality between eIF5A and Ypt1 reveals a connection between translation and the secretory pathway in yeast. Mol Genet Genomics 280(3):211–221

    Article  PubMed  CAS  Google Scholar 

  • Gentz PM, Blatch GL, Dorrington RA (2009) Dimerization of the yeast eukaryotic translation initiation factor 5A requires hypusine and is RNA dependent. FEBS J 276(3):695–706

    Article  PubMed  CAS  Google Scholar 

  • Glick BR, Chladek S, Ganoza MC (1979) Peptide bond formation stimulated by protein synthesis factor EF-P depends on the aminoacyl moiety of the acceptor. Eur J Biochem/FEBS 97(1):23–28

    Article  CAS  Google Scholar 

  • Gough J, Karplus K, Hughey R, Chothia C (2001) Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol 313(4):903–919

    Article  PubMed  CAS  Google Scholar 

  • Gregio AP, Cano VP, Avaca JS, Valentini SR, Zanelli CF (2009) eIF5A has a function in the elongation step of translation in yeast. Biochem Biophys Res Commun 380(4):785–790

    Article  PubMed  CAS  Google Scholar 

  • Guinier A (1955) Small-angle scattering of X-rays. In: Fournet G, ed. John Wiley and Sons, New York

  • Hammerley AP (1997) FIT2D: An introduction and Overview. ESRF International Report

  • Hanawa-Suetsugu K, Sekine S, Sakai H, Hori-Takemoto C, Terada T, Unzai S, Tame JR, Kuramitsu S, Shirouzu M, Yokoyama S (2004) Crystal structure of elongation factor P from Thermus thermophilus HB8. Proc Nat Acad Sci USA 101(26):9595–9600

    Article  PubMed  Google Scholar 

  • Henderson A, Hershey JW (2011) The role of eIF5A in protein synthesis. Cell Cycle 10(21):3617–3618

    Article  PubMed  CAS  Google Scholar 

  • Hershey JW, Smit-McBride Z, Schnier J (1990) The role of mammalian initiation factor eIF-4D and its hypusine modification in translation. Biochim Biophys Acta 1050(1–3):160–162

    PubMed  CAS  Google Scholar 

  • Jao DL, Chen KY (2006) Tandem affinity purification revealed the hypusine-dependent binding of eukaryotic initiation factor 5A to the translating 80S ribosomal complex. J Cell Biochem 97(3):583–598

    Article  PubMed  CAS  Google Scholar 

  • Kang HA, Hershey JW (1994) Effect of initiation factor eIF-5A depletion on protein synthesis and proliferation of Saccharomyces cerevisiae. J Biol Chem 269(6):3934–3940

    PubMed  CAS  Google Scholar 

  • Kellermann G, Vicentin F, Tamura E, Rocha M, Tolentino H, Barbosa A, Craievich A, Torriani I (1997) The small-angle X-ray scattering beamline of the Brazilian Synchrotron Light Laboratory. J Appl Crystallogr 30(2):880–883

    Article  CAS  Google Scholar 

  • Kemper WM, Berry KW, Merrick WC (1976) Purification and properties of rabbit reticulocyte protein synthesis initiation factors M2Balpha and M2Bbeta. J Biol Chem 251(18):5551–5557

    PubMed  CAS  Google Scholar 

  • Konarev PV (2006) ATSAS 2.1, a program package for small-angle scattering data analysis. J Appl Cryst 39:277–286

    Article  CAS  Google Scholar 

  • Kozin MB, Svergun DI (2001) Automated matching of high- and low-resolution structural models. J Appl Crystallogr 34:33–41

    Article  CAS  Google Scholar 

  • Lancaster L, Kiel MC, Kaji A, Noller HF (2002) Orientation of ribosome recycling factor in the ribosome from directed hydroxyl radical probing. Cell 111(1):129–140

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Ito K (2003) Making sense of mimic in translation termination. Trends Biochem Sci 28(2):99–105

    Article  PubMed  CAS  Google Scholar 

  • Navarre WW, Zou SB, Roy H, Xie JL, Savchenko A, Singer A, Edvokimova E, Prost LR, Kumar R, Ibba M, Fang FC (2010) PoxA, yjeK, and elongation factor P coordinately modulate virulence and drug resistance in Salmonella enterica. Mol Cell 39(2):209–221

    Article  PubMed  CAS  Google Scholar 

  • Orthaber D, Bergmann A, Glatter O (2000) SAXS experiments on absolute scale with Kratky systems using water as a secondary standard. J Appl Cryst 33:218–225

    Article  CAS  Google Scholar 

  • Park MH, Wolff EC, Folk JE (1993) Is hypusine essential for eukaryotic cell proliferation? Trends Biochem Sci 18(12):475–479

    Article  PubMed  CAS  Google Scholar 

  • Park MH, Lee YB, Joe YA (1997) Hypusine is essential for eukaryotic cell proliferation. Biol Signals 6(3):115–123

    Article  PubMed  CAS  Google Scholar 

  • Park MH, Nishimura K, Zanelli CF, Valentini SR (2010) Functional significance of eIF5A and its hypusine modification in eukaryotes. Amino Acids 38(2):491–500

    Article  PubMed  CAS  Google Scholar 

  • Park JH, Dias CA, Lee SB, Valentini SR, Sokabe M, Fraser CS, Park MH (2011) Production of active recombinant eIF5A: reconstitution in E. coli of eukaryotic hypusine modification of eIF5A by its coexpression with modifying enzymes. Protein Eng Des Sel 24(3):301–309

    Article  PubMed  CAS  Google Scholar 

  • Park JH, Johansson HE, Aoki H, Huang BX, Kim HY, Ganoza MC, Park MH (2012) Post-translational modification by β-lysylation is required for activity of Escherichia coli elongation factor P (EF-P). J Biol Chem 287(4):2579–2590

    Article  PubMed  CAS  Google Scholar 

  • Petoukhov MV, Svergun DI (2003) New methods for domain structure determination of proteins from solution scattering data. J Appl Crystallogr 36:540–544

    Article  CAS  Google Scholar 

  • Prinz B, Schultchen J, Rydzewski R, Holz C, Boettner M, Stahl U, Lang C (2004) Establishing a versatile fermentation and purification procedure for human proteins expressed in the yeasts Saccharomyces cerevisiae and Pichia pastoris for structural genomics. J Struct Funct Genomics 5(1–2):29–44

    Article  PubMed  CAS  Google Scholar 

  • Roy H, Zou SB, Bullwinkle TJ, Wolfe BS, Gilreath MS, Forsyth CJ, Navarre WW, Ibba M (2011) The tRNA synthetase paralog PoxA modifies elongation factor-P with (R)-beta-lysine. Nat Chem Biol 7(10):667–669

    Article  PubMed  CAS  Google Scholar 

  • Saini P, Eyler DE, Green R, Dever TE (2009) Hypusine-containing protein eIF5A promotes translation elongation. Nature 459(7243):118–121

    Article  PubMed  CAS  Google Scholar 

  • Schnier J, Schwelberger HG, Smit-McBride Z, Kang HA, Hershey JW (1991) Translation initiation factor 5A and its hypusine modification are essential for cell viability in the yeast Saccharomyces cerevisiae. Mol Cell Biol 11(6):3105–3114

    PubMed  CAS  Google Scholar 

  • Svergun D (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Cryst 25:495–503

    Article  Google Scholar 

  • Svergun DI (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J 76(6):2879–2886

    Article  PubMed  CAS  Google Scholar 

  • Svergun D, Petoukhov Koch M (2001) Determination of domain structure of proteins from X-ray solution scattering. Biophys J 80:2946–2953

    Article  PubMed  CAS  Google Scholar 

  • Svergun DI, Semenyuk AV, Feigin LA (1988) Small-angle-scattering-data treatment by the regularization method. Acta Crystallogr A 44:244–250

    Article  Google Scholar 

  • Tong Y, Park I, Hong BS, Nedyalkova L, Tempel W, Park HW (2009) Crystal structure of human eIF5A1: insight into functional similarity of human eIF5A1 and eIF5A2. Proteins 75(4):1040–1045

    Article  PubMed  CAS  Google Scholar 

  • Vestergaard B, Van LB, Andersen GR, Nyborg J, Buckingham RH, Kjeldgaard M (2001) Bacterial polypeptide release factor RF2 is structurally distinct from eukaryotic eRF1. Mol Cell 8(6):1375–1382

    Article  PubMed  CAS  Google Scholar 

  • William KR, Lopresti M, Stone K (1997) Internal protein sequencing of SDS-PAGE separated proteins: optimization of an in-gel digest protocol. In: Marshak D (ed) Techniques VIII. Academic Press, San Diego, pp 79–90

    Google Scholar 

  • Xu A, Chen KY (2001) Hypusine is required for a sequence-specific interaction of eukaryotic initiation factor 5A with post systematic evolution of ligands by exponential enrichment RNA. J Biol Chem 276(4):2555–2561

    Article  PubMed  CAS  Google Scholar 

  • Xu A, Jao DL, Chen KY (2004) Identification of mRNA that binds to eukaryotic initiation factor 5A by affinity co-purification and differential display. Biochem J 384(Pt 3):585–590

    PubMed  CAS  Google Scholar 

  • Yanagisawa T, Sumida T, Ishii R, Takemoto C, Yokoyama S (2010) A paralog of lysyl-tRNA synthetase aminoacylates a conserved lysine residue in translation elongation factor P. Nat Struct Mol Biol 17(9):1136–1143

    Article  PubMed  CAS  Google Scholar 

  • Zanelli CF, Valentini SR (2005) Pkc1 acts through Zds1 and Gic1 to suppress growth and cell polarity defects of a yeast eIF5A mutant. Genetics 171(4):1571–1581

    Article  PubMed  CAS  Google Scholar 

  • Zanelli CF, Maragno AL, Gregio AP, Komili S, Pandolfi JR, Mestriner CA, Lustri WR, Valentini SR (2006) eIF5A binds to translational machinery components and affects translation in yeast. Biochem Biophys Res Commun 348(4):1358–1366

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants to S.R.V. from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Faculdade de Ciências Farmacêuticas (PADC). We also thank FAPESP and CNPq for the fellowship awarded to Camila A. O. Dias. We would like to thank the staff of the National Synchrotron Light Laboratory (LNLS, Brazil) for access to the SAXS beamline and other facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Roberto Valentini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 58 kb)

Supplementary material 2 (PPT 803 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dias, C.A.O., Garcia, W., Zanelli, C.F. et al. eIF5A dimerizes not only in vitro but also in vivo and its molecular envelope is similar to the EF-P monomer. Amino Acids 44, 631–644 (2013). https://doi.org/10.1007/s00726-012-1387-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1387-7

Keywords

Navigation