Skip to main content

Advertisement

Log in

A BODIPY-embedding miltefosine analog linked to cell-penetrating Tat(48-60) peptide favors intracellular delivery and visualization of the antiparasitic drug

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Therapeutic application of many drugs is often hampered by poor or denied access to intracellular targets. A case in point is miltefosine (MT), an orally active antiparasitic drug, which becomes ineffective when parasites develop dysfunctional uptake systems. We report here the synthesis of a fluorescent BODIPY-embedding MT analogue with appropriate thiol functionalization allowing linkage to the cell-penetrating Tat(48-60) peptide through disulfide or thioether linkages. The resulting constructs are efficiently internalized into the otherwise MT-invulnerable R40 Leishmania strain, resulting in fast parasite killing, and hence successful avoidance of the resistance. In the disulfide-linked conjugate, an additional fluoro tag on the Tat moiety allows to monitor its reductive cleavage within the cytoplasm. Terminally differentiated cells such as peritoneal macrophages, impervious to MT unless infected by Leishmania, can uptake the drug in its Tat-conjugated form. The results afford proof-of-principle for using CPP vectors to avert drug resistance in parasites, and/or for tackling leishmaniasis by modulating macrophage uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Boc:

Tert-Butyloxycarbonyl

BDP:

BODIPY: 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene

CPP:

Cell-penetrating peptide

DIEA:

Diisopropylethylamine

DIPCI:

Diisopropylcarbodiimide

Fmoc:

9-Fluorenylmethyloxycarbonyl

HBTU:

2-(1H-Benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate

Mmt:

4-Methoxytrityl

MT:

Miltefosine: hexadecylphosphocholine

Npys:

3-Nitro-2-pyridylsulfenyl

TFA:

Trifluoroacetic acid

TIS:

Triisopropylsilane

References

  • Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7:e35671

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Aroui S, Brahim S, Hamelin J, De Waard M, Breard J, Kenani A (2009) Conjugation of doxorubicin to cell penetrating peptides sensitizes human breast MDA-MB 231 cancer cells to endogenous TRAIL-induced apoptosis. Apoptosis 14:1352–1365

    Article  PubMed  CAS  Google Scholar 

  • Aubry S, Burlina F, Dupont E, Delaroche D, Joliot A, Lavielle S, Chassaing G, Sagan S (2009) Cell-surface thiols affect cell entry of disulfide-conjugated peptides. FASEB J 23:2956–2967

    Article  PubMed  CAS  Google Scholar 

  • Barnes MP, Shen WC (2009) Disulfide and thioether linked cytochrome c-oligoarginine conjugates in HeLa cells. Int J Pharm 369:79–84

    Article  PubMed  CAS  Google Scholar 

  • Beaudette TT, Cohen JA, Bachelder EM, Broaders KE, Cohen JL, Engleman EG, Frechet JM (2009) Chemoselective ligation in the functionalization of polysaccharide-based particles. J Am Chem Soc 131:10360–10361

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bernatowicz MS, Matsueda R, Matsueda GR (1986) Preparation of Boc-[S-(3-nitro-2-pyridinesulfenyl)]-cysteine and its use for unsymmetrical disulfide bond formation. Int J Pept Protein Res 28:107–112

    Article  PubMed  CAS  Google Scholar 

  • Boohaker RJ, Lee MW, Vishnubhotla P, Perez JM, Khaled AR (2012) The use of therapeutic peptides to target and to kill cancer cells. Curr Med Chem 19:3794–3804

    Article  PubMed  CAS  Google Scholar 

  • Chappuis F, Sundar S, Hailu A, Ghalib H, Rijal S, Peeling RW, Alvar J, Boelaert M (2007) Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol 5:873–882

    Article  PubMed  Google Scholar 

  • Choi YS, Lee JY, Suh JS, Lee SJ, Yang VC, Chung CP, Park YJ (2011) Cell penetrating peptides for tumor targeting. Curr Pharm Biotechnol 12:1166–1182

    Article  PubMed  CAS  Google Scholar 

  • Coates AR Halls G (2012) Antibiotics in phase II and III clinical trials. Handb Exp Pharmacol, 167–183

  • Crombez L, Morris MC, Heitz F, Divita G (2011) A non-covalent peptide-based strategy for ex vivo and in vivo oligonucleotide delivery. Methods Mol Biol 764:59–73

    Article  PubMed  CAS  Google Scholar 

  • den Boer ML, Alvar J, Davidson RN, Ritmeijer K, Balasegaram M (2009) Developments in the treatment of visceral leishmaniasis. Expert Opin Emerg Drugs 14:395–410

    Article  CAS  Google Scholar 

  • Deshayes S, Konate K, Aldrian G, Crombez L, Heitz F, Divita G (2010) Structural polymorphism of non-covalent peptide-based delivery systems: highway to cellular uptake. Biochim Biophys Acta 1798:2304–2314

    Article  PubMed  CAS  Google Scholar 

  • Dorlo TP, Balasegaram M, Beijnen JH, de Vries PJ (2012) Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother 67:2576–2597

    Article  PubMed  CAS  Google Scholar 

  • Dutot L, Lecorche P, Burlina F, Marquant R, Point V, Sagan S, Chassaing G, Mallet JM, Lavielle S (2009) Glycosylated cell-penetrating peptides and their conjugates to a proapoptotic peptide: preparation by click chemistry and cell viability studies. J Chem Biol 3:51–65

    Article  PubMed Central  PubMed  Google Scholar 

  • El Andaloussi SA, Hammond SM, Mager I, Wood MJ (2012) Use of cell-penetrating-peptides in oligonucleotide splice switching therapy. Curr Gene Ther 12:161–178

    Article  PubMed  Google Scholar 

  • Garcia-Hernandez R, Manzano JI, Castanys S, Gamarro F (2012) Leishmania donovani develops resistance to drug combinations. PLoS Negl Trop Dis 6:e1974

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Henriques ST, Costa J, Castanho MA (2005) Translocation of beta-galactosidase mediated by the cell-penetrating peptide pep-1 into lipid vesicles and human HeLa cells is driven by membrane electrostatic potential. Biochemistry 44:10189–10198

    Article  PubMed  CAS  Google Scholar 

  • Hornillos V, Saugar JM, de la Torre BG, Andreu D, Rivas L, Acuna AU, Amat-Guerri F (2006) Synthesis of 16-mercaptohexadecylphosphocholine, a miltefosine analog with leishmanicidal activity. Bioorg Med Chem Lett 16:5190–5193

    Article  PubMed  CAS  Google Scholar 

  • Hornillos V, Carrillo E, Rivas L, Amat-Guerri F, Acuna AU (2008) Synthesis of BODIPY-labeled alkylphosphocholines with leishmanicidal activity, as fluorescent analogues of miltefosine. Bioorg Med Chem Lett 18:6336–6339

    Article  PubMed  CAS  Google Scholar 

  • Hornillos V, Tormo L, Amat-Guerri F, Acuña AU (2010) Synthesis and spectral properties of fluorescent linear alkylphosphocholines labeled with all-(E)-1,6-diphenyl-1,3,5-hexatriene. J Photochem Photobiol A 216:79–84

    Article  CAS  Google Scholar 

  • Huang Y, Jiang Y, Wang H, Wang J, Shin MC, Byun Y, He H, Liang Y, Yang VC (2013) Curb challenges of the “Trojan Horse” approach: Smart strategies in achieving effective yet safe cell-penetrating peptide-based drug delivery. Adv Drug Deliv Rev 65:1299–1315

    Google Scholar 

  • Imahori H, Norieda H, Yamada H, Nishimura Y, Yamazaki I, Sakata Y, Fukuzumi S (2001) Light-harvesting and photocurrent generation by gold electrodes modified with mixed self-assembled monolayers of boron-dipyrrin and ferrocene-porphyrin-fullerene triad. J Am Chem Soc 123:100–110

    Article  PubMed  CAS  Google Scholar 

  • Khafagy el S, Morishita M (2012) Oral biodrug delivery using cell-penetrating peptide. Adv Drug Deliv Rev 64:531–539

    Article  CAS  Google Scholar 

  • Koren E, Torchilin VP (2012) Cell-penetrating peptides: breaking through to the other side. Trends Mol Med 18:385–393

    Article  PubMed  CAS  Google Scholar 

  • Li H, Nelson CE, Evans BC, Duvall CL (2011) Delivery of intracellular-acting biologics in pro-apoptotic therapies. Curr Pharm Des 17:293–319

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lindberg S, Munoz-Alarcon A, Helmfors H, Mosqueira D, Gyllborg D, Tudoran O, Langel U (2013) PepFect15, a novel endosomolytic cell-penetrating peptide for oligonucleotide delivery via scavenger receptors. Int J Pharm 441:242–247

    Article  PubMed  CAS  Google Scholar 

  • Lindgren M, Rosenthal-Aizman K, Saar K, Eiriksdottir E, Jiang Y, Sassian M, Ostlund P, Hallbrink M, Langel U (2006) Overcoming methotrexate resistance in breast cancer tumour cells by the use of a new cell-penetrating peptide. Biochem Pharmacol 71:416–425

    Article  PubMed  CAS  Google Scholar 

  • Luque-Ortega JR, de la Torre BG, Hornillos V, Bart JM, Rueda C, Navarro M, Amat-Guerri F, Acuna AU, Andreu D, Rivas L (2012) Defeating Leishmania resistance to miltefosine (hexadecylphosphocholine) by peptide-mediated drug smuggling: a proof of mechanism for trypanosomatid chemotherapy. J Control Release 161:835–842

    Article  PubMed  CAS  Google Scholar 

  • MacEwan SR, Chilkoti A (2013) Harnessing the power of cell-penetrating peptides: activatable carriers for targeting systemic delivery of cancer therapeutics and imaging agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5:31–48

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Martinez MN, Amidon GL (2002) A mechanistic approach to understanding the factors affecting drug absorption: a review of fundamentals. J Clin Pharmacol 42:620–643

    Article  PubMed  CAS  Google Scholar 

  • Mezö G, Mihala N, Andreu D, Hudecz F (2000) Conjugation of epitope peptides with SH group to branched chain polymeric polypeptides via Cys(Npys). Bioconjug Chem 11:484–491

    Article  PubMed  CAS  Google Scholar 

  • Monso M, Kowalczyk W, Andreu D, de la Torre BG (2012) Reverse thioether ligation route to multimeric peptide antigens. Org Biomol Chem 10:3116–3121

    Article  PubMed  CAS  Google Scholar 

  • Nakamura S, Furutani A, Toru T (2002) Highly enantioselective reaction of α-lithio 2-quinolyl sulfide using chiral bis(oxazoline)s: a new synthesis of enantioenriched thiols. Eur J Org Chem 1690–1695

  • Nasrolahi Shirazi A, Tiwari R, Chhikara BS, Mandal D, Parang K (2013) Design and biological evaluation of cell-penetrating peptide-doxorubicin conjugates as prodrugs. Mol Pharm 10:488–499

    Article  PubMed  CAS  Google Scholar 

  • Perez-Victoria FJ, Gamarro F, Ouellette M, Castanys S (2003) Functional cloning of the miltefosine transporter. A novel P-type phospholipid translocase from Leishmania involved in drug resistance. J Biol Chem 278:49965–49971

    Article  PubMed  CAS  Google Scholar 

  • Ridge RJ, Matsueda GR, Haber E, Matsueda R (1982) Sulfur protection with the 3-nitro-2-pyridine sulfenyl group in solid-phase peptide synthesis. Int J Pept Protein Res 19:490–498

    Article  PubMed  CAS  Google Scholar 

  • Rijal S, Ostyn B, Uranw S, Rai K, Bhattarai NR, Dorlo TP, Beijnen JH, Vanaerschot M, Decuypere S, Dhakal SS, Das ML, Karki P, Singh R, Boelaert M, Dujardin JC (2013) Increasing failure of miltefosine in the treatment of Kala-azar in Nepal and the potential role of parasite drug resistance, reinfection, or noncompliance. Clin Infect Dis 56:1530–1538

    Google Scholar 

  • Ruhland A, Leal N, Kima PE (2007) Leishmania promastigotes activate PI3K/Akt signalling to confer host cell resistance to apoptosis. Cell Microbiol 9:84–96

    Article  PubMed  CAS  Google Scholar 

  • Saugar JM, Delgado J, Hornillos V, Luque-Ortega JR, Amat-Guerri F, Acuna AU, Rivas L (2007) Synthesis and biological evaluation of fluorescent leishmanicidal analogues of hexadecylphosphocholine (miltefosine) as probes of antiparasite mechanisms. J Med Chem 50:5994–6003

    Article  PubMed  CAS  Google Scholar 

  • Seifert K, Perez-Victoria FJ, Stettler M, Sanchez-Canete MP, Castanys S, Gamarro F, Croft SL (2007) Inactivation of the miltefosine transporter, LdMT, causes miltefosine resistance that is conferred to the amastigote stage of Leishmania donovani and persists in vivo. Int J Antimicrob Agents 30:229–235

    Article  PubMed  CAS  Google Scholar 

  • Steven V, Graham D (2008) Oligonucleotide conjugation to a cell-penetrating (TAT) peptide by Diels-Alder cycloaddition. Org Biomol Chem 6:3781–3787

    Article  PubMed  CAS  Google Scholar 

  • Svensen N, Walton JG, Bradley M (2012) Peptides for cell-selective drug delivery. Trends Pharmacol Sci 33:186–192

    Article  PubMed  CAS  Google Scholar 

  • Tyagi M, Rusnati M, Presta M, Giacca M (2001) Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans. J Biol Chem 276:3254–3261

    Article  PubMed  CAS  Google Scholar 

  • van Blitterswijk WJ, Verheij M (2013) Anticancer mechanisms and clinical application of alkyl phospholipids. Biochim Biophys Acta 1831:663–674

    Article  PubMed  CAS  Google Scholar 

  • Wang HY, Wang RF (2012) Enhancing cancer immunotherapy by intracellular delivery of cell-penetrating peptides and stimulation of pattern-recognition receptor signaling. Adv Immunol 114:151–176

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wood TE, Thompson A (2007) Advances in the chemistry of dipyrrins and their complexes. Chem Rev 107:1831–1861

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Matteucci MD (1999) A novel thiol protecting group: a 2-thioquinoline sulfide as a masked sulfhydryl moiety. Tetrahedron Lett 40:1467–1470

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research supported by funds from the European Union (HEALTH-2007-223414 to L.R. and D.A.),VI PN de I+D+I 2008-2011, (PI09-01928, PI12-02706) and ISCIII-Subdirección General de Redes y Centros de Investigación Cooperativa (RICET RD 06/0021/0006, RD12/0018/0007 to L.R.) MICINN (CTQ2010-16457 to A.U.A, BIO2008-04487-CO3 to D.A.), MINECO (SAF2011-24899 to D.A.) and Generalitat de Catalunya (SGR2009-00492 to D.A.).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luis Rivas or David Andreu.

Additional information

Dedicated to the memory of Prof. Francisco Amat-Guerri, who passed away during the preparation of this article.

B. G. de la Torre and V. Hornillos contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

726_2013_1661_MOESM1_ESM.docx

Supplementary material 1 (DOCX 449 kb) Synthesis of pyrroles 2 and 3, carbon numbering of MT analogue 1 and precursors; 1H- and 13C-NMR spectra of 1; HPLC and mass spectra of conjugates 7 and 8

Supplementary material 2 (DOCX 1746 kb)

Supplementary material 3 (DOCX 1273 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Torre, B.G., Hornillos, V., Luque-Ortega, J.R. et al. A BODIPY-embedding miltefosine analog linked to cell-penetrating Tat(48-60) peptide favors intracellular delivery and visualization of the antiparasitic drug. Amino Acids 46, 1047–1058 (2014). https://doi.org/10.1007/s00726-013-1661-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1661-3

Keywords

Navigation