Skip to main content
Log in

Aqueous microwave-assisted solid-phase peptide synthesis using Fmoc strategy. III: Racemization studies and water-based synthesis of histidine-containing peptides

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

In this study, we describe the first aqueous microwave-assisted synthesis of histidine-containing peptides in high purity and with low racemization. We have previously shown the effectiveness of our synthesis methodology for peptides including difficult sequences using water-dispersible 9-fluorenylmethoxycarbonyl-amino acid nanoparticles. It is an organic solvent-free, environmentally friendly method for chemical peptide synthesis. Here, we studied the racemization of histidine during an aqueous-based coupling reaction with microwave irradiation. Under our microwave-assisted protocol using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride, the coupling reaction can be efficiently performed with low levels of racemization of histidine. Application of this water-based microwave-assisted protocol with water-dispersible 9-fluorenylmethoxycarbonyl-amino acid nanoparticles led to the successful synthesis of the histidine-containing hexapeptide neuropeptide W-30 (10–15), Tyr-His-Thr-Val-Gly-Arg-NH2, in high yield and with greatly reduced histidine racemization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York

    Google Scholar 

  • Angeletti RH, Bibbs L, Bonewald LF, Fields GB, Kelly JW, McMurray JS, Moore WT, Weintraub ST (1997) Analysis of racemization during “standard” solid phase peptide synthesis: a multicenter study. In: Marshak DR (ed) Techniques in protein chemistry III. Academic Press Inc, San Diego, pp 875–890

    Google Scholar 

  • Angell YM, Alsina J, Albericio F, Barany G (2002) Practical protocols for stepwise solid-phase synthesis of cysteine-containing peptides. J Pept Res 60:292–299

    Article  PubMed  CAS  Google Scholar 

  • Bodanszky M, Bodanszky A (1967) Racemization in peptide chemistry. Mechanism-specific models. Chem Commun 1967:591–592

    Google Scholar 

  • Collins JM, Collin MJ (2003) Novel method for enhanced solid-phase peptide synthesis using microwave energy. Biopolymers 71:361–366

    Google Scholar 

  • Dourtoglou V, Ziegler JC, Gross B (1978) L’hexafluorophosphate de O-benzotriazoyl- N, N, N′, N′-tetramethyluronium: un reactif de couplage peptidique nouveau et efficace. Tetrahedron Lett 19:1269–1272

    Article  Google Scholar 

  • Dourtoglou V, Gross B, Lambropoulou C, Ziodrou C (1984) O-Benzotriazolyl-N, N, N′, N′-tetramethyluronium hexafluorophosphate as coupling reagent for the synthesis of peptides of biological interest. Synthesis 1984:572–574

    Article  Google Scholar 

  • Echalier C, Ai-Halifa S, Kreiter A, Enjalbal C, Sanchez P, Ronga L, Puget K, Verdié P, Amblard M, Martinez J, Subra G (2013) Heating and microwave assisted SPPS of C-terminal acid peptides on trityl resin: the truth behind the yield. Amino Acids 45:1395–1403

    Article  PubMed  CAS  Google Scholar 

  • Erdélyi M, Gogoll A (2002) Rapid microwave-assisted solid-phase peptide synthesis. Synthesis 11:1592–1596

    Google Scholar 

  • Fletcher AR, Jones JH, Ramage WI, Stachulski AV (1979) The use of the N π-phenacyl group for the protection of the histidine side chain in peptide synthesis. J Chem Soc Perkin Trans 1(1979):2261–2267

    Article  Google Scholar 

  • Friligou I, Papadimitriou E, Gatos D, Matsoukas J, Tselios T (2011) Microwave-assisted solid-phase peptide synthesis of the 60–110 domain of human pleiotrophin on 2-chlorotrityl resin. Amino Acids 40:1431–1440

    Article  PubMed  CAS  Google Scholar 

  • Han Y, Albericio F, Barany G (1997) Occurrence and minimization of cysteine racemization during stepwise solid-phase peptide synthesis. J Org Chem 62:4307–4312

    Article  PubMed  CAS  Google Scholar 

  • Hibino H, Nishiuchi Y (2011) 4-Methoxybenzyloxymethyl group as an Nπ-protecting group for histidine to eliminate side-chain-induced racemization in the Fmoc strategy. Tetrahedron Lett 52:4947–4949

    Article  CAS  Google Scholar 

  • Hibino H, Miki Y, Nishiuchi Y (2012) Synthesis and application of Nα-Fmoc-Nπ-4-methoxybenzyloxymethylhistidine in solid phase peptide synthesis. J Pept Sci 18:763–769

    Article  CAS  Google Scholar 

  • Hojo K, Maeda M, Kawasaki K (2001) A new water-soluble N-protecting group, 2-[phenyl (methyl) sulfonio] ethyloxycarbonyl tetrafluoroborate, and its application to solid phase peptide synthesis in water. J Pept Sci 7:615–618

    Article  PubMed  CAS  Google Scholar 

  • Hojo K, Maeda M, Kawasaki K (2004a) A water-soluble N-protecting group, 2-[phenyl(methyl)sulfonio]ethoxycarbonyl tetrafluoroborate, and its application to peptide synthesis. Tetrahedron 60:1875–1866

  • Hojo K, Maeda M, Kawasaki K (2004b) 2-(4-Sulfophenyl) ethoxycarbonyl group: a new water-soluble N-protecting group and its application to solid-phase peptide synthesis in water. Tetrahedron Lett 45:9293–9295

    Article  CAS  Google Scholar 

  • Hojo K, Ichikawa H, Maeda M, Kida S, Fukumori Y, Kawasaki K (2007) Solid-phase peptide synthesis using nanoparticulate amino acids in water. J PeptSci 13:493–497

    Article  CAS  Google Scholar 

  • Hojo K, Ichikawa H, Fukumori Y, Kawasaki K (2008) Development of a method for solid-phase peptide synthesis in water. Int J Pept Res Ther 14:373–380

    Article  CAS  Google Scholar 

  • Hojo K, Hara A, Kitai H, Onishi M, Ichikawa H, Fukumori Y, Kawasaki K (2011) Development of a method for environmentally friendly chemical peptide synthesis in water using water-dispersible amino acid nanoparticles. Chem Cent J 5:49

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hojo K, Ichikawa H, Hara A, Onishi M, Kawasaki K, Fukumori Y (2012) Aqueous microwave-assisted solid-phase peptide synthesis using Fmoc strategy: in-water synthesis of “difficult sequences”. Protein Pept Lett 19:1231–1236

    Article  PubMed  CAS  Google Scholar 

  • Hojo K, Ichikawa H, Hara A, Onishi M, Kawasaki K, Fukumori Y (2013) Aqueous microwave-assisted solid-phase peptide synthesis using Fmoc strategy II: racemization studies and water-based synthesis of cysteine-containing peptides. Protein Pept Lett 20:1122–1128

    Article  PubMed  CAS  Google Scholar 

  • Isidro-Liobet A, Álavarez M, Albericio A (2009) Amino acid-protecting groups. Chem Rev 109:2455–2504

    Article  Google Scholar 

  • Jones JH, Ramage WI (1978) An approach to the prevention of racemization in the synthesis of histidine-containing peptides. J Chem Soc Chem Commun 1978:472–473

    Article  Google Scholar 

  • Kaiser E, Colescott RL, Bossinger CD, Cook PI (1970) Color test for detection of free terminal amino groups in the solid phase synthesis of peptide. Anal Biochem 1970:595–598

    Article  Google Scholar 

  • Kaiser T, Nicholson G, Kohlbau H, Volete R (1996) Racemization studies of Fmoc-Cys(Trt)-OH during stepwise Fmoc-solid phase peptide synthesis. Tetrahedron Lett 37:1187–1190

    Article  CAS  Google Scholar 

  • Kaminski ZJ, Paneth P, Rudzinski JA (1998) Study on the activation of carboxylic acids by means of 2-chloro-4,6-dimethoxy-1,3,5-triazine and 2-chloro-4,6-diphenoxy-1.3.5-triazine. J Org Chem 63:4248–4225

  • Kunishima M, Kawachi C, Morita J, Terao K, Iawasaki F, Tani S (1999) 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride: an efficient condensing agent leading to the formulation of amide and esters. Tetrahedron 55:13159–13179

    Article  CAS  Google Scholar 

  • Loffrendo C, Assunção NA, Gerhardt J, Miranda MTM (2009) Microwave-assisted solid-phase peptide synthesis at 60 °C: alternative conditions with low enantiomerization. J Pept Sci 15:808–817

    Article  Google Scholar 

  • Mergler M, Dick F, Sax B, Schwindling J, Vorherr TH (2001) Synthesis of Fmoc-His(3-Bum)-OH. J Pept Sci 7:502–510

    Article  PubMed  CAS  Google Scholar 

  • Olivos HJ, Alluri PG, Reddy MM, Salony D, Kodadek T (2002) Microwave-assisted solid-phase synthesis of peptides. Org Lett 4:4057–4059

    Article  PubMed  CAS  Google Scholar 

  • Palasek SA, Cox ZJ, Collins LM (2007) Limiting racemization and aspartimide formation in microwave-enhanced Fmoc solid phase peptide synthesis. J Pept Sci 13:143–148

    Article  PubMed  CAS  Google Scholar 

  • Rabinow BE (2004) Nanosuspensions in drug delivery. Nat Rev Discov 3:785–795

    Article  CAS  Google Scholar 

  • Robertson N, Jiang L, Ramage R (1999) Racemisation studies of a novel reagent for solid-phase peptide synthesis. Tetrahedron 54:14233–14254

    Google Scholar 

  • Sheehan JC, Hlavka JJ (1956) The use of water-soluble and basic carbodiimides in peptide synthesis. J Org Chem 21:439–441

    Article  CAS  Google Scholar 

  • Sheldon RA (2007) The E factor: fifteen years on. Green Chem 9:1273–1283

    Article  CAS  Google Scholar 

  • Shimomura Y, Harada M, Goto M, Sugo T, Matsumoto Y, Abe M, Watanabe T, Asami T, Kitada C, Mori M, Onda H, Fujino M (2002) Identification of neuropeptide W as the endogenous ligand for orphan G-protein-coupled receptors GPR7 amd GPR8. J Biol Chem 277:35826–35832

    Article  PubMed  CAS  Google Scholar 

  • Sieber P, Riniker B (1978) Protection of histidine in peptide synthesis. A reassessment of the trityl group. Tetrahedron Lett 28:6031–6034

    Article  Google Scholar 

  • Staros JV, Wright RW, Swingle DM (1986) Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions. Anal Biochem 156:220–222

    Article  PubMed  CAS  Google Scholar 

  • Veber DF (1975) Peptide synthesis from the practitioner’s point of view. In: Walter R, Meienhofer J (eds) Peptides: chemistry, structure and biology. Ann Arbor Science Publishers, Michigan, pp 307–316

    Google Scholar 

  • Wade JD, Lin F, Hossain MA, Dawson RM (2012) Chemical synthesis and biological evaluation of an antimicrobial peptide gonococcal inhibitor. Amino Acids 43:2279–2283

    Article  PubMed  CAS  Google Scholar 

  • Winterton N (2001) Twelve more green chemistry principles. Green Chem 3:G73–G75

    Article  Google Scholar 

  • Yu HM, Chen ST, Wang JT (1992) Enhanced coupling efficiency in solid-phase peptide synthesis by microwave irradiation. J Org Chem 57:4781–4784

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Hajime Hibino and Prof. Yuji Nishiuchi (Peptide Institute, Japan) for valuable advice and providing Fmoc-His(MBom)-OH. This work supported by a “Strategic Research Foundation” at Private Universities matching fund subsidy from the Japanese Ministry of Education, Culture, Sports Science and Technology, 2012–2016 (S1201010) and “Takeda Science Foundation”. Studies at the Florey Institute of Neuroscience and Mental Health were supported by the Victorian Government Operational Infrastructure Support Program.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

The manuscript does not contain clinical studies or patient data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keiko Hojo or John D. Wade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hojo, K., Shinozaki, N., Hidaka, K. et al. Aqueous microwave-assisted solid-phase peptide synthesis using Fmoc strategy. III: Racemization studies and water-based synthesis of histidine-containing peptides. Amino Acids 46, 2347–2354 (2014). https://doi.org/10.1007/s00726-014-1779-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1779-y

Keywords

Navigation