Skip to main content
Log in

Melittin peptides exhibit different activity on different cells and model membranes

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Melittin (MLT) is a lytic peptide with a broad spectrum of activity against both eukaryotic and prokaryotic cells. To understand the role of proline and the thiol group of cysteine in the cytolytic activity of MLT, native MLT and cysteine-containing analogs were prepared using solid phase peptide synthesis. The antimicrobial and cytolytic activities of the monomeric and dimeric MLT peptides against different cells and model membranes were investigated. The results indicated that the proline residue was necessary for antimicrobial activity and cytotoxicity and its absence significantly reduced lysis of model membranes and hemolysis. Although lytic activity against model membranes decreased for the MLT dimer, hemolytic activity was increased. The native peptide and the MLT-P14C monomer were mainly unstructured in buffer while the dimer adopted a helical conformation. In the presence of neutral and negatively charged vesicles, the helical content of the three peptides was significantly increased. The lytic activity, therefore, is not correlated to the secondary structure of the peptides and, more particularly, on the propensity to adopt helical conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anaya-Lopez JL, Lopez-Meza JE, Ochoa-Zarzosa A (2013) Bacterial resistance to cationic antimicrobial peptides. Crit Rev Microbiol 39(2):180–195

    Article  CAS  PubMed  Google Scholar 

  • Anderson RL, Davis S (1982) An organic phosphorus assay which avoids the use of hazardous perchloric acid. Clin Chim Acta 121(1):111–116

    Article  CAS  PubMed  Google Scholar 

  • Asthana N, Yadav SP, Ghosh JK (2004) Dissection of antibacterial and toxic activity of melittin: a leucine zipper motif plays a crucial role in determining its hemolytic activity but not antibacterial activity. J Biol Chem 279(53):55042–55050

    Article  CAS  PubMed  Google Scholar 

  • Balla MS, Bowie JH, Separovic F (2004) Solid-state NMR study of antimicrobial peptides from Australian frogs in phospholipid membranes. Eur Biophys J 33(2):109–116

    Article  CAS  PubMed  Google Scholar 

  • Beveridge TJ (1999) Structures of Gram-negative cell walls and their derived membrane vesicles. J Bacteriol 181:4725–4733

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burton MG, Huang QM, Hossain MA, Wade JD, Clayton AHA, Gee ML (2013) Long-time-scale interaction dynamics between a model antimicrobial peptide and giant unilamellar vesicles. Langmuir 29(47):14613–14621

    Article  CAS  PubMed  Google Scholar 

  • Dempsey CE, Bazzo R, Harvey TS, Syperek I, Boheim G, Campbell ID (1991) Contribution of proline-14 to the structure and actions of melittin. FEBS Lett 281(1–2):240–244

    Article  CAS  PubMed  Google Scholar 

  • Fernandez DI, Lee T-H, Sani M-A, Aguilar M-I, Separovic F (2013) Proline facilitates membrane insertion of the antimicrobial peptide maculatin 1.1 via surface indentation and subsequent lipid disordering. Biophys J 104(7):1495–1507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ferre R, Melo MN, Correia AD, Feliu L, Bardaji E, Planas M, Castanho M (2009) Synergistic effects of the membrane actions of cecropin–melittin antimicrobial hybrid peptide BP100. Biophys J 96(5):1815–1827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gajski G, Garaj-Vrhovac V (2013) Melittin: a lytic peptide with anticancer properties. Environ Toxicol Pharmacol 36(2):697–705

    Article  CAS  PubMed  Google Scholar 

  • Gali H, Sieckman GL, Hoffman TJ, Owen NK, Mazuru DG, Forte LR, Volkert WA (2002) Chemical synthesis of Escherichia Coli STh analogues by regioselective disulfide bond formation: biological evaluation of an 111In-DOTA-Phe19-STh analogue for specific targeting of human colon cancers. Bioconjug Chem 13(2):224–231

    Article  CAS  PubMed  Google Scholar 

  • Gehman J, Luc F, Hall K, Lee T-H, Boland M, Pukala T, Bowie J, Aguilar M-I, Separovic F (2008) Effect of antimicrobial peptides from Australian tree frogs on anionic phospholipid membranes. Biochemistry 47(33):8557–8565

    Article  CAS  PubMed  Google Scholar 

  • Ghosh AK, Rukmini R, Chattopadhyay A (1997) Modulation of tryptophan environment in membrane-bound melittin by negatively charged phospholipids: implications in membrane organization and function. Biochemistry 36(47):14291–14305

    Article  CAS  PubMed  Google Scholar 

  • Hall K, Lee TH, Aguilar MI (2011) The role of electrostatic interactions in the membrane binding of melittin. J Mol Recognit 24(1):108–118

    Article  CAS  PubMed  Google Scholar 

  • Heerklotz H, Seelig J (2007) Leakage and lysis of lipid membranes induced by the lipopeptide surfactin. Eur Biophy J 36(4–5):305–314

    Article  CAS  Google Scholar 

  • Henriksen JR, Etzerodt T, Gjetting T, Andresen TL (2014) Side chain hydrophobicity modulates therapeutic activity and membrane selectivity of antimicrobial peptide mastoparan-X. PLoS One 9(3):e91007

    Article  PubMed Central  PubMed  Google Scholar 

  • Hincha DK, Crowe JH (1996) The lytic activity of the bee venom peptide melittin is strongly reduced by the presence of negatively charged phospholipids or chloroplast galactolipids in the membranes of phosphatidylcholine large unilamellar vesicles. Biochim Biophys Acta 1284(2):162–170

    Article  PubMed  Google Scholar 

  • Hyun-Ji C, Jeong-Han K, Kwan-Kyu P, Jung-Yoon C, Yoon-Yub P, Yong-Suk M, Il-Kyung C, Hyeun-Wook C, Cheorl-Ho K, Yung Hyun C, Wun-Jae K, Sung-Kwon M, Young-Chae C (2013) Comparative proteome analysis of tumor necrosis factor α-stimulated human vascular smooth muscle cells in response to melittin. Proteome Sci 11:20

    Article  Google Scholar 

  • Izadpanah A, Gallo RL (2005) Antimicrobial peptides. J Am Acad Dermatol 52(3 Pt 1):381–390

    Article  PubMed  Google Scholar 

  • Jackson KE, Spielmann T, Hanssen E, Adisa A, Separovic F, Dixon MW, Trenholme KR, Hawthorne PL, Gardiner DL, Gilberger T, Tilley L (2007) Selective permeabilization of the host cell membrane of Plasmodium falciparum-infected red blood cells with streptolysin O and equinatoxin II. Biochem J 403(1):167–175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • John E, Jähnig F (1993) A synthetic analogue of melittin aggregates in large oligomers. Biophys J 63(6):1536

    Article  Google Scholar 

  • Johnson JW, Fisher JF, Mobashery S (2013) Bacterial cell-wall recycling. Ann NY Acad Sci 1277:54–75

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Juba M, Porter D, Dean S, Gillmor S, Bishop B (2013) Characterization and performance of short cationic antimicrobial peptide isomers. Pept Sci 100(4):387–401

    Article  Google Scholar 

  • Khatun UL, Mukhopadhyay C (2013) Interaction of bee venom toxin melittin with ganglioside GM1 bicelle. Biophys Chem 180–181:66–75

    Article  PubMed  Google Scholar 

  • Klocek G, Seelig J (2008) Melittin interaction with sulfated cell surface sugars. Biochemistry 47(9):2841–2849

    Article  CAS  PubMed  Google Scholar 

  • Lad MD, Birembaut F, Clifton LA, Frazier RA, Webster JR, Green RJ (2007) Antimicrobial peptide–lipid binding interactions and binding selectivity. Biophys J 92(10):3575–3586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lam YH, Wassall SR, Morton CJ, Smith R, Separovic F (2001) Solid-state NMR structure determination of melittin in a lipid environment. Biophys J 81:2752–2761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lam YH, Morton J, Separovic F (2002) Solid-state NMR conformational studies of a melittin-inhibitor complex. Eur Biophys J 31(5):383

    Article  CAS  PubMed  Google Scholar 

  • Lee TH, Heng C, Swann MJ, Gehman JD, Separovic F, Aguilar MI (2010) Real-time quantitative analysis of lipid disordering by aurein 1.2 during membrane adsorption, destabilisation and lysis. Biochim Biophys Acta Biomembr 1798(10):1977–1986

    Article  CAS  Google Scholar 

  • Lee J, Lee D, Choi H, Kim HH, Kim H, Hwang JS, Lee DG, Kim JI (2014) Synthesis and antimicrobial activity of cysteine-free coprisin nonapeptides. Biochem Biophys Res Commun 443(2):483–488

    Article  CAS  PubMed  Google Scholar 

  • Lorenzon EN, Cespedes GF, Vicente EF, Nogueira LG, Bauab TM, Castro MS, Cilli EM (2012) Effects of dimerization on the structure and biological activity of antimicrobial peptide Ctx-Ha. Antimicrob Agents Chemother 56(6):3004–3010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maróti G, Kereszt A, Kondorosi E, Mergaert P (2011) Natural roles of antimicrobial peptides in microbes, plants and animals. Res Microbiol 162(4):363–374

  • Maruyama K, Nagasawa H, Suzuki A (1999) 2,2′-Bispyridyl disulfide rapidly induces intramolecular disulfide bonds in peptides. Peptides 20(7):881–884

    Article  CAS  PubMed  Google Scholar 

  • Ningsih Z, Hossain MA, Wade JD, Clayton AH, Gee ML (2012) Slow insertion kinetics during interaction of a model antimicrobial peptide with unilamellar phospholipid vesicles. Langmuir 28(4):2217–2224

    Article  CAS  PubMed  Google Scholar 

  • Popham DL (2013) Visualizing the production and arrangement of peptidoglycan in Gram-positive cells. Mol Microbiol 88(4):645–649

    Article  CAS  PubMed  Google Scholar 

  • Raghuraman H, Chattopadhyay A (2004) Interaction of melittin with membrane cholesterol: a fluorescence approach. Biophys J 87(4):2419–2432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raghuraman H, Chattopadhyay A (2007) Orientation and dynamics of melittin in membranes of varying composition utilizing NBD fluorescence. Biophys J 92(4):1271–1283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rapson AC, Hossain MA, Wade JD, Nice EC, Smith TA, Clayton AH, Gee ML (2011) Structural dynamics of a lytic peptide interacting with a supported lipid bilayer. Biophys J 100(5):1353–1361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reddy KV, Yedery RD, Aranha C (2004) Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 24(6):536–547

    Article  CAS  PubMed  Google Scholar 

  • Rivett DE, Kirkpatrick A, Hewish DR, Reilly W, Werkmeister JA (1996) Dimerization of truncated melittin analogues results in cytolytic peptides. Biochem J 316(Pt 2):525–529

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sani MA, Whitwell TC, Gehman JD, Robins-Browne RM, Pantarat N, Attard TJ, Reynolds EC, O’Brien-Simpson NM, Separovic F (2013) Maculatin 1.1 disrupts Staphylococcus aureus lipid membranes via a pore mechanism. Antimicrob Agents Chemother 57(8):3593–3600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scholtz JM, Qian H, York EJ, Stewart JM, Baldwin RL (1991) Parameters of helix–coil transition theory for alanine-based peptides of varying chain lengths in water. Biopolymers 31(13):1463–1470

    Article  CAS  PubMed  Google Scholar 

  • Schubert D, Pappert G, Boss K (1985) Does dimeric melittin occur in aqueous solutions? Biophys J 48(2):327–329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sessa G, Freer JH, Colacicc G, Weissman G (1969) Interaction of a lytic polypeptide, melittin, with lipid membrane systems. J Biol Chem 244(13):3575–3582

    CAS  PubMed  Google Scholar 

  • Takei J, Reményi A, Clarke AR, Dempsey CE (1998) Self-association of disulfide-dimerized melittin analogues. Biochemistry 37(16):5699–5708

    Article  CAS  PubMed  Google Scholar 

  • Terwilliger TC, Eisenberg D (1982) The structure of melittin. II. Interpretation of the structure. J Biol Chem 257(11):6016–6022

    CAS  PubMed  Google Scholar 

  • Tomoyoshi T, Fumimasa N, Yasunori Y, Yohko T-T, Michio H, Kingo T (2013) Multiple membrane interactions and versatile vesicle deformations elicited by melittin. Toxins 5(4):637–664

    Article  Google Scholar 

  • Tosteson MT, Levy JJ, Caporale LH, Rosenblatt M, Tosteson DC (1987) Solid-phase synthesis of melittin: purification and functional characterization. Biochemistry 26(21):6627–6631

    Article  CAS  PubMed  Google Scholar 

  • Wade JD, Lin F, Hossain MA, Dawson R (2012) Chemical synthesis and biological evaluation of an antimicrobial peptide gonococcal growth inhibitor. Amino Acids 43(6):2279–2283

    Article  CAS  PubMed  Google Scholar 

  • Ward JB (1981) Teichoic and teichuronic acids: biosynthesis, assembly, and location. Microbiol Rev 45(2):211–243

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao Z, Rolli H, Schneider CH (1995) Immunogenicity of dinitrocarboxyphenylated melittin: the influence of C-terminal chain shortening, N-terminal substitution and prolin insertion at positions 5 and 10. J Pept Sci 1(2):140–148

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge partial support of the studies undertaken in the authors’ laboratory by the Australian Research Council (DP150103522) to MAH and JDW. Research at the FNI was supported by the Victorian Government’s Operational Infrastructure Support Program. EJ thanks the University of Melbourne for an MIRS.

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frances Separovic or Mohammed Akhter Hossain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamasbi, E., Batinovic, S., Sharples, R.A. et al. Melittin peptides exhibit different activity on different cells and model membranes. Amino Acids 46, 2759–2766 (2014). https://doi.org/10.1007/s00726-014-1833-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1833-9

Keywords

Navigation