Skip to main content
Log in

The modulation of NMDA receptors and l-arginine/nitric oxide pathway is implicated in the anti-immobility effect of creatine in the tail suspension test

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The modulation of N-methyl-D-aspartate receptor (NMDAR) and l-arginine/nitric oxide (NO) pathway is a therapeutic strategy for treating depression and neurologic disorders that involves excitotoxicity. Literature data have reported that creatine exhibits antidepressant and neuroprotective effects, but the implication of NMDAR and l-arginine/nitric oxide (NO) pathway in these effects is not established. This study evaluated the influence of pharmacological agents that modulate NMDAR/l-arginine-NO pathway in the anti-immobility effect of creatine in the tail suspension test (TST) in mice. The NOx levels and cellular viability in hippocampal and cerebrocortical slices of creatine-treated mice were also evaluated. The anti-immobility effect of creatine (10 mg/kg, po) in the TST was abolished by NMDA (0.1 pmol/mouse, icv), d-serine (30 µg/mouse, icv, glycine-site NMDAR agonist), arcaine (1 mg/kg, ip, polyamine site NMDAR antagonist), l-arginine (750 mg/kg, ip, NO precursor), SNAP (25 μg/mouse, icv, NO donor), L-NAME (175 mg/kg, ip, non-selective NOS inhibitor) or 7-nitroindazole (50 mg/kg, ip, neuronal NOS inhibitor), but not by DNQX (2.5 µg/mouse, icv, AMPA receptor antagonist). The combined administration of sub-effective doses of creatine (0.01 mg/kg, po) and NMDAR antagonists MK-801 (0.001 mg/kg, po) or ketamine (0.1 mg/kg, ip) reduced immobility time in the TST. Creatine (10 mg/kg, po) increased cellular viability in hippocampal and cerebrocortical slices and enhanced hippocampal and cerebrocortical NO x levels, an effect potentiated by l-arginine or SNAP and abolished by 7-nitroindazole or L-NAME. In conclusion, the anti-immobility effect of creatine in the TST involves NMDAR inhibition and enhancement of NO levels accompanied by an increase in neural viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

MTT:

3-(4,5-Dimethylthiazol-2-yl-diphenyltetrazolium bromide

DMEM:

Dulbecco’s modified Eagle’s medium

DMSO:

dimethylsulfoxide

FST:

Forced Swimming Test

Icv :

Intracerebroventricular

Ip :

Intraperitoneal

L-NAME:

NG-nitro-l-arginine methyl ester

NO:

Nitric oxide

NOS:

Nitric oxide synthase

NMDA:

N-Methyl-D-aspartate

NMDAR:

N-Methyl-D-aspartate receptor

Po:

Per os

SNAP:

S-nitroso-N-acetyl-penicillamine

TST:

Tail suspension test

References

  • Allen PJ, D’Anci KE, Kanarek RB, Renshaw PF (2010) Chronic creatine supplementation alters depression-like behavior in rodents in a sex-dependent manner. Neuropsychopharmacology 35:534–546

    PubMed Central  CAS  PubMed  Google Scholar 

  • Almeida LS, Salomons GS, Hogenboom F, Jakobs C, Schoffelmeer AN (2006) Exocytotic release of creatine in rat brain. Synapse 60:118–123

    CAS  PubMed  Google Scholar 

  • Andreassen OA, Jenkins BG, Dedeoglu A, Ferrante KL, Bogdanov MB, Kaddurah-Daouk R et al (2001) Increases in cortical glutamate concentrations in transgenic amyotrophic lateral sclerosis mice are attenuated by creatine supplementation. J Neurochem 77:383–390

    CAS  PubMed  Google Scholar 

  • Andres RH, Ducray AD, Perez-Bouza A, Schlattner U, Huber AW, Krebs SH et al (2005) Creatine supplementation improves dopaminergic cell survival and protects against MPP+ toxicity in an organotypic tissue culture system. Cell Transplant 14:537–550

    PubMed  Google Scholar 

  • Assis LC, Rezin GT, Comim CM, Valvassori SS, Jeremias IC, Zugno AI et al (2009) Effect of acute administration of ketamine and imipramine on creatine kinase activity in the brain of rats. Revista Brasileira de Psiquiatria 31:247–252

    PubMed  Google Scholar 

  • Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF et al (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475:91–95

    PubMed Central  CAS  PubMed  Google Scholar 

  • Baranano DE, Snyder SH (2001) Neural roles for heme oxygenase: contrasts to nitric oxide synthase. Proc Natl Acad Sci USA 98:10996–11002

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bender A, Auer DP, Merl T, Reilmann R, Saemann P, Yassouridis A et al (2005) Creatine supplementation lowers brain glutamate levels in Huntington’s disease. J Neurol 252:36–41

    CAS  PubMed  Google Scholar 

  • Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS et al (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354

    CAS  PubMed  Google Scholar 

  • Bettio LE, Cunha MP, Budni J, Pazini FL, Oliveira A, Colla AR et al (2012) Guanosine produces an antidepressant-like effect through the modulation of NMDA receptors, nitric oxide-cGMP and PI3 K/mTOR pathways. Behav Brain Res 234:137–148

    CAS  PubMed  Google Scholar 

  • Bielenberg GW, Beck T, Sauer D, Burniol M, Krieglstein J (1987) Effects of cerebroprotective agents on cerebral blood flow and on postischemic energy metabolism in the rat brain. J Cereb Blood Flow Metab 7:480–488

    CAS  PubMed  Google Scholar 

  • Brewer GJ, Wallimann TW (2000) Protective effect of the energy precursor creatine against toxicity of glutamate and beta-amyloid in rat hippocampal neurons. J Neurochem 74:1968–1978

    CAS  PubMed  Google Scholar 

  • Brocardo PS, Budni J, Lobato KR, Kaster MP, Rodrigues AL (2008) Antidepressant-like effect of folic acid: involvement of NMDA receptors and l-arginine-nitric oxide-cyclic guanosine monophosphate pathway. Eur J Pharmacol 598:37–42

    Google Scholar 

  • Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AM (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8:766–775

    CAS  PubMed  Google Scholar 

  • Carter AJ, Muller RE, Pschorn U, Stransky W (1995) Preincubation with creatine enhances levels of creatine phosphate and prevents anoxic damage in rat hippocampal slices. J Neurochem 64:2691–2699

    CAS  PubMed  Google Scholar 

  • Chen MJ, Russo-Neustadt AA (2007) Nitric oxide signaling participates in norepinephrine-induced activity of neuronal intracellular survival pathways. Life Sci 81:1280–1290

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng A, Wang S, Cai J, Rao MS, Mattson MP (2003) Nitric oxide acts in a positive feedback loop with BDNF to regulate neural progenitor cell proliferation and differentiation in the mammalian brain. Dev Biol 258:319–333

    CAS  PubMed  Google Scholar 

  • Choi YB, Lipton SA (2000) Redox modulation of the NMDA receptor. Cell Mol Life Sci 57:1535–1541

    CAS  PubMed  Google Scholar 

  • Constantin-Teodosiu D, Greenhaff PL, Gardiner SM, Randall MD, March JE, Bennett T (1995) Attenuation by creatine of myocardial metabolic stress in Brattleboro rats caused by chronic inhibition of nitric oxide synthase. Br J Pharmacol 116:3288–3292

    PubMed Central  CAS  PubMed  Google Scholar 

  • Contestabile A (2000) Roles of NMDA receptor activity and nitric oxide production in brain development. Brain Res Rev 32:476–509

    CAS  PubMed  Google Scholar 

  • Contestabile A, Ciani E (2004) Role of nitric oxide in the regulation of neuronal proliferation, survival and differentiation. Neurochem Int 45:903–914

    CAS  PubMed  Google Scholar 

  • Cruz SL, Soberanes-Chávez P, Páez-Martinez N, López-Rubalcava C (2009) Toluene has antidepressant-like actions in two animal models used for the screening of antidepressant drugs. Psychopharmacology 204:279–286

    CAS  PubMed  Google Scholar 

  • Cunha MP, Machado DG, Bettio LE, Capra JC, Rodrigues AL (2008) Interaction of zinc with antidepressants in the tail suspension test. Prog Neuropsychopharmacol Biol Psychiatry 32:1913–1920

    CAS  PubMed  Google Scholar 

  • Cunha MP, Machado DG, Capra JC, Jacinto J, Bettio LE, Rodrigues AL (2012) Antidepressant-like effect of creatine in mice involves dopaminergic activation. J Psychopharmacol 26:1489–1501

    CAS  PubMed  Google Scholar 

  • Cunha MP, Pazini FL, Oliveira A, Bettio LE, Rosa JM, Machado DG et al (2013a) The activation of alpha1-adrenoceptors is implicated in the antidepressant-like effect of creatine in the tail suspension test. Prog Neuropsychopharmacol Biol Psychiatry 44:39–50

    CAS  PubMed  Google Scholar 

  • Cunha MP, Pazini FL, Oliveira A, Machado DG, Rodrigues AL (2013b) Evidence for the involvement of 5-HT1A receptor in the acute antidepressant-like effect of creatine in mice. Brain Res Bull 95:61–69

    CAS  PubMed  Google Scholar 

  • da Silva GD, Matteussi AS, dos Santos AR, Calixto JB, Rodrigues AL (2000) Evidence for dual effects of nitric oxide in the forced swimming test and in the tail suspension test in mice. Neuro Rep 11:3699–36702

    Google Scholar 

  • Dager SR, Friedman SD, Parow A, Demopulos C, Stoll AL, Lyoo IK et al (2004) Brain metabolic alterations in medication-free patients with bipolar disorder. Arch Gen Psychiatry 61:450–458

    CAS  PubMed  Google Scholar 

  • de Oliveira RB, Graham B, Howlett MC, Gravina FS, Oliveira MW, Imtiaz MS et al (2010) Ketamine anesthesia helps preserve neuronal viability. J Neurosci Methods 189:230–232

    PubMed  Google Scholar 

  • Dhir A, Kulkarni SK (2007) Involvement of nitric oxide (NO) signaling pathway in the antidepressant action of bupropion, a dopamine reuptake inhibitor. Eur J Pharmacol 568:177–185

    CAS  PubMed  Google Scholar 

  • Ducray A, Kipfer S, Huber AW, Andres RH, Seiler RW, Schlattner U et al (2006) Creatine and neurotrophin-4/5 promote survival of nitric oxide synthase-expressing interneurons in striatal cultures. Neurosci Lett 395:57–62

    CAS  PubMed  Google Scholar 

  • Duman RS, Li N, Liu RJ, Duric V, Aghajanian G (2012) Signaling pathways underlying the rapid antidepressant actions of ketamine. Neuropharmacology 62:35–41

    PubMed Central  CAS  PubMed  Google Scholar 

  • Esplugues JV (2002) NO as a signalling molecule in the nervous system. Br J Pharmacol 135:1079–1095

    PubMed Central  CAS  PubMed  Google Scholar 

  • Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates, 1st edn. Academic Press, San Diego

    Google Scholar 

  • Genius J, Geiger J, Bender A, Moller HJ, Klopstock T, Rujescu D (2012) Creatine protects against excitoxicity in an in vitro model of neurodegeneration. PLoS One 7:e30554

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guerrero-Ontiveros ML, Wallimann T (1998) Creatine supplementation in health and disease. Effects of chronic creatine ingestion in vivo: down-regulation of the expression of creatine transporter isoforms in skeletal muscle. Mol Cell Biochem 184:427–437

    CAS  PubMed  Google Scholar 

  • Haraldseth O, Gronas T, Southon TE, Jynge P, Gisvold SE, Unsgard G (1990) The NMDA antagonist MK-801 improved metabolic recovery after 10 minutes global cerebral ischaemia in rats measured with 31 phosphorous magnetic resonance spectroscopy. Acta Neurochir (Wien) 106:32–36

    CAS  Google Scholar 

  • Harkin AJ, Bruce KH, Craft B, Paul IA (1999) Nitric oxide synthase inhibitors have antidepressant-like properties in mice. 1. Acute treatments are active in the forced swim test. Eur J Pharmacol 372:207–213

    CAS  PubMed  Google Scholar 

  • Harkin A, Connor TJ, Walsh M, St John N, Kelly JP (2003) Serotonergic mediation of the antidepressant-like effects of nitric oxide synthase inhibitors. Neuropharmacology 44:616–623

    CAS  PubMed  Google Scholar 

  • Hashimoto K, Sawa A, Iyo M (2007) Increased levels of glutamate in brains from patients with mood disorders. Biol Psychiatry 62:1310–1316

    CAS  PubMed  Google Scholar 

  • Heiberg IL, Wegener G, Rosenberg R (2002) Reduction of cGMP and nitric oxide has antidepressant-like effects in the forced swimming test in rats. Behav Brain Res 134:479–484

    CAS  PubMed  Google Scholar 

  • Heinzen EL, Pollack GM (2002) Use of an electrochemical nitric oxide sensor to detect neuronal nitric oxide production in conscious, unrestrained rats. J Pharmacol Toxicol Methods 48:139-146

    CAS  PubMed  Google Scholar 

  • Herring NR, Schaefer TL, Tang PH, Skelton MR, Lucot JP, Gudelsky GA et al (2008) Comparison of time-dependent effects of (+)-methamphetamine or forced swim on monoamines, corticosterone, glucose, creatine, and creatinine in rats. BMC Neurosci 9:49

    PubMed Central  PubMed  Google Scholar 

  • Hevel JM, Marletta MA (1994) Nitric-oxide synthase assays. Methods Enzymol 233:250–258

    CAS  PubMed  Google Scholar 

  • Hua Y, Huang XY, Zhou L, Zhou QG, Hu Y, Luo CX et al (2008) DETA/NONOate, a nitric oxide donor, produces antidepressant effects by promoting hippocampal neurogenesis. Psychopharmacology 200:231–242

    CAS  PubMed  Google Scholar 

  • Iijima M, Fukumoto K, Chaki S (2012) Acute and sustained effects of a metabotropic glutamate 5 receptor antagonist in the novelty-suppressed feeding test. Behav Brain Res 235(2):287–292

    CAS  PubMed  Google Scholar 

  • Inan SY, Yalcin I, Aksu F (2004) Dual effects of nitric oxide in the mouse forced swimming test: possible contribution of nitric oxide-mediated serotonin release and potassium channel modulation. Pharmacol Biochem Behav 77:457–464

    CAS  PubMed  Google Scholar 

  • Joca SR, Guimarães FS (2006) Inhibition of neuronal nitric oxide synthase in the rat hippocampus induces antidepressant-like effects. Psychopharmacology 185:298–305

    CAS  PubMed  Google Scholar 

  • Juravleva E, Barbakadze T, Natsvlishvili N, Kekelidze T, Mikeladze D (2003) Creatine prevents the cytotoxicity of haloperidol by alteration of NO/Ras/NF-κB system. In: Kekelidze T, Holtzman D (eds) Creatine kinase and brain energy metabolism: function and disease. NATO science series: life and behavioral science, vol 343. IOS Press, Amsterdam, pp 113–119

    Google Scholar 

  • Juravleva E, Barbakadze T, Mikeladze D, Kekelidze T (2005) Creatine enhances survival of glutamate-treated neuronal/glial cells, modulates Ras/NF-kappaB signaling, and increases the generation of reactive oxygen species. J Neurosci Res 79:224–230

    CAS  PubMed  Google Scholar 

  • Kaster MP, Rosa AO, Santos AR, Rodrigues AL (2005) Involvement of nitric oxide-cGMP pathway in the antidepressant-like effects of adenosine in the forced swimming test. Int J Neuropsychopharmacol 8:601–606

    CAS  PubMed  Google Scholar 

  • Kaster MP, Machado DG, Santos AR (2012) Rodrigues AL (2012) Involvement of NMDA receptors in the antidepressant-like action of adenosine. Pharmacol Rep 64:706–713

    CAS  PubMed  Google Scholar 

  • Kato T, Takahashi S, Shioiri T, Inubushi T (1992) Brain phosphorous metabolism in depressive disorders detected by phosphorus-31 magnetic resonance spectroscopy. J Affect Disord 26:223–230

    CAS  PubMed  Google Scholar 

  • Kawasaki H, Nohtomi A, Nakahara T, Itoh M, Tashiro N (2001) Identification of creatine as an endogenous inhibitor of [3H] flunitrazepam binding. Society for Neuroscience, San Diego

    Google Scholar 

  • Kim SY, Lee YJ, Kim H, Lee DW, Woo DC, Choi CB et al (2010) Desipramine attenuates forced swim test-induced behavioral and neurochemical alterations in mice: an in vivo (1)H-MRS study at 9.4T. Brain Res 1348:105–113

    CAS  PubMed  Google Scholar 

  • Knox D, Perrine SA, George SA, Galloway MP, Liberzon I (2010) Single prolonged stress decreases glutamate, glutamine, and creatine concentrations in the rat medial prefrontal cortex. Neurosci Lett 480:16–20

    PubMed Central  CAS  PubMed  Google Scholar 

  • Koike H, Iijima M, Chaki S (2011) Involvement of AMPA receptor in both the rapid and sustained antidepressant-like effects of ketamine in animal models of depression. Behav Brain Res 224:107–111

    CAS  PubMed  Google Scholar 

  • Kondo DG, Sung YH, Hellem TL, Fiedler KK, Shi X, Jeong EK et al (2011) Open-label adjunctive creatine for female adolescents with SSRI-resistant major depressive disorder: a 31-phosphorus magnetic resonance spectroscopy study. J Affect Disord 135:354–361

    PubMed  Google Scholar 

  • Krass M, Wegener G, Vasar E, Volke V (2011) The antidepressant action of imipramine and venlafaxine involves suppression of nitric oxide synthesis. Behav Brain Res 218:57–63

    CAS  PubMed  Google Scholar 

  • Krystal JH, Sanacora G, Duman RS (2013) Rapid-acting glutamatergic antidepressants: the path to ketamine and beyond. Biol Psychiatry 73:1133–1141

    PubMed Central  CAS  PubMed  Google Scholar 

  • Laursen SE, Belknap JK (1986) Intracerebroventricular injections in mice. Some methodological refinements. J Pharmacol Methods 16:355–357

    CAS  PubMed  Google Scholar 

  • Lei SZ, Pan ZH, Aggarwal SK, Chen HS, Hartman J, Sucher NJ et al (1992) Effect of nitric oxide production on the redox modulatory site of the NMDA receptor-channel complex. Neuron 8:1087–1099

    CAS  PubMed  Google Scholar 

  • Li N, Liu RJ, Dwyer JM, Banasr M, Lee B, Son H et al (2011) Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry 69:754–761

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lipton SA, Rayudu PV, Choi YB, Sucher NJ, Chen HS (1998) Redox modulation of the NMDA receptor by NO-related species. Prog Brain Res 118:73–82

    CAS  PubMed  Google Scholar 

  • Lonart G, Wang J, Johnson KM (1992) Nitric oxide induces neurotransmitter release from hippocampal slices. Eur J Pharmacol 220:271–272

    CAS  PubMed  Google Scholar 

  • Lorrain DS, Hull EM (1993) Nitric oxide increases dopamine and serotonin release in the medial preoptic area. Neuro Rep 5:87–89

    CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Ludka FK, Zomkowski AD, Cunha MP, Dal-Cim T, Zeni AL, Rodrigues AL et al (2013) Acute atorvastatin treatment exerts antidepressant-like effect in mice via the l-arginine-nitric oxide-cyclic guanosine monophosphate pathway and increases BDNF levels. Eur Neuropsychopharmacol 23:400–412

    CAS  PubMed  Google Scholar 

  • Lugenbiel P, Sartorius A, Vollmayr B, Schloss P (2010) Creatine transporter expression after antidepressant therapy in rats bred for learned helplessness. World J Biol Psychiatry 11:329–333

    PubMed  Google Scholar 

  • Lyoo IK, Yoon S, Kim TS, Hwang J, Kim JE, Won W et al (2012) A randomized, double-blind placebo-controlled trial of oral creatine monohydrate augmentation for enhanced response to a selective serotonin reuptake inhibitor in women with major depressive disorder. Am J Psychiatry 169:937–945

    PubMed  Google Scholar 

  • Machado DG, Cunha MP, Neis VB, Balen GO, Colla A, Grando J, Brocardo PS, Bettio LE, Capra JC, Rodrigues AL (2012) Fluoxetine reverses depressive-like behaviors and increases hippocampal acetylcholinesterase activity induced by olfactory bulbectomy. Pharmacol Biochem Behav 103:220–229

    CAS  PubMed  Google Scholar 

  • Mantovani M, Pértile R, Calixto JB, Santos AR, Rodrigues AL (2003) Melatonin exerts antidepressant-like effect in the tail suspension test in mice: evidence for involvement of N-methyl-D-aspartate receptors and the l-arginine-nitric oxide pathway. Neurosci Lett 343:1–4

    CAS  PubMed  Google Scholar 

  • Manzoni O, Prezeau L, Marin P, Deshager S, Bockaert J, Fagni L (1992) Nitric oxide-induced blockade of NMDA receptors. Neuron 8:653–662

    CAS  PubMed  Google Scholar 

  • Moghaddam B, Adams B, Verma A, Daly D (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 17:2921–2927

    CAS  PubMed  Google Scholar 

  • Molz S, Decker H, Dal-Cim T, Cremonez C, Cordova FM, Leal RB et al (2008) Glutamate-induced toxicity in hippocampal slices involves apoptotic features and p38 MAPK signaling. Neurochem Res 33:27–36

    CAS  PubMed  Google Scholar 

  • Moretti M, Freitas AE, Budni J, Fernandes SC, Balen Gde O, Rodrigues AL (2011) Involvement of nitric oxide-cGMP pathway in the antidepressant-like effect of ascorbic acid in the tail suspension test. Behav Brain Res 225:328–333

    CAS  PubMed  Google Scholar 

  • Moretti M, Budni J, Ribeiro CM, Rodrigues AL (2012) Involvement of different types of potassium channels in the antidepressant-like effect of ascorbic acid in the mouse tail suspension test. Eur J Pharmacol 687:21–27

    CAS  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    CAS  PubMed  Google Scholar 

  • Nikonenko I, Boda B, Steen S, Knott G, Welker E, Muller D (2008) PSD-95 promotes synaptogenesis and multiinnervated spine formation through nitric oxide signaling. J Cell Biol 183:1115–1127

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nowak G, Ordway GA, Paul IA (1995) Alterations in the N-methyl-D-aspartate (NMDA) receptor complex in the frontal cortex of suicide victims. Brain Res 675:157–164

    CAS  PubMed  Google Scholar 

  • Oliveira MS, Furian AF, Fighera MR, Fiorenza NG, Ferreira J, Rubin MA et al (2008) The involvement of the polyamines binding sites at the NMDA receptor in creatine-induced spatial learning enhancement. Behav Brain Res 187:200–204

    CAS  PubMed  Google Scholar 

  • Papouin T, Ladepeche L, Ruel J, Sacchi S, Labasque M, Hanini M et al (2012) Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 150:633–646

    CAS  PubMed  Google Scholar 

  • Parodi M, Rebaudo R, Perasso L, Gandolfo C, Cupello A, Balestrino M (2003) Effects of exogenous creatine on population spike amplitude and on postanoxic hyperexcitability in brain slices. Brain Res 963:197–202

    CAS  PubMed  Google Scholar 

  • Poleszak E, Szewczyk B, Wlaz A, Fidecka S, Wlaz P, Pilc A et al (2008) D-serine, a selective glycine/N-methyl-D-aspartate receptor agonist, antagonizes the antidepressant-like effects of magnesium and zinc in mice. Pharmacolog Rep 60:996–1000

    CAS  Google Scholar 

  • Raley KM, Lipton P (1990) NMDA receptor activation accelerates ischemic energy depletion in the hippocampal slice and the demonstration of a threshold for ischemic damage to protein synthesis. Neurosci Lett 110:118–123

    CAS  PubMed  Google Scholar 

  • Reus GZ, Stringari RB, Rezin GT, Fraga DB, Daufenbach JF, Scaini G et al (2012) Administration of memantine and imipramine alters mitochondrial respiratory chain and creatine kinase activities in rat brain. J Neural Transm 119:481–491

    CAS  PubMed  Google Scholar 

  • Rieger DK, Costa AP, Budni J, Moretti M, Barbosa SG, Nascimento KS, Teixeira EH, Cavada BS, Rodrigues AL, Leal RB (2014) Antidepressant-like effect of Canavalia brasiliensis (ConBr) lectin in mice: evidence for the involvement of the glutamatergic system. Pharmacol Biochem Behav 122:53–60

    CAS  PubMed  Google Scholar 

  • Rodrigues AL, Rosa JM, Gadotti VM, Goulart EC, Santos MM, Silva AV, Sehnem B, Rosa LS, Gonçalves RM, Corrêa R, Santos AR (2005) Antidepressant-like and antinociceptive-like actions of 4-(4′-chlorophenyl)-6-(4′’-methylphenyl)-2-hydrazinepyrimidine Mannich base in mice. Pharmacol Biochem Behav 82:156–162

    CAS  PubMed  Google Scholar 

  • Romero TR, Galdino GS, Silva GC, Resende LC, Perez AC, Cortes SF et al (2011) Ketamine activates the l-arginine/Nitric oxide/cyclic guanosine monophosphate pathway to induce peripheral antinociception in rats. Anesth Analg 113:1254–1259

    CAS  PubMed  Google Scholar 

  • Rosa AO, Lin J, Calixto JB, Santos AR, Rodrigues AL (2003) Involvement of NMDA receptors and l-arginine-nitric oxide pathway in the antidepressant-like effects of zinc in mice. Behavioral Brain Res 144:87–93

    CAS  Google Scholar 

  • Royes LF, Fighera MR, Furian AF, Oliveira MS, Fiorenza NG, Ferreira J et al (2008) Neuromodulatory effect of creatine on extracellular action potentials in rat hippocampus: role of NMDA receptors. Neurochem Int 53:33–37

    CAS  PubMed  Google Scholar 

  • Sanacora G, Zarate CA, Krystal JH, Manji HK (2008) Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nat Rev Drug Discov 7:426–437

    PubMed Central  CAS  PubMed  Google Scholar 

  • Satoh S, Murayama T, Nomura Y (1996) Sodium nitroprusside stimulates noradrenaline release from rat hippocampal slices in the presence of dithiothreitol. Brain Res 733:167–174

    CAS  PubMed  Google Scholar 

  • Segieth J, Pearce B, Fowler L, Whitton PS (2001) Regulatory role of nitric oxide over hippocampal 5-HT release in vivo. Naunyn-Schmiedeberg’s Arch Pharmacol 363:302–306

    CAS  Google Scholar 

  • Sharp JW, Petersen DL, Langford MT (1995) DNQX inhibits phencyclidine (PCP) and ketamine induction of the hsp70 heat shock gene in the rat cingulate and retrosplenial cortex. Brain Res 687:114–124

    CAS  PubMed  Google Scholar 

  • Skolnick P (1999) Antidepressants for the new millennium. Eur J Pharmacol 375:31–40

    CAS  PubMed  Google Scholar 

  • Somjen GG, Aitken PG, Balestrino M, Schiff SJ (1987) Uses and abuses of in vitro systems in the study of the pathophysiology of the central nervous system. In: Schurr A, Teyler TJ, Tseng MT (eds) Brain slices in the study of brain damage. Karger, Basel, pp 89–104

    Google Scholar 

  • Spandou E, Karkavelas G, Soubasi V, Avgovstides-Savvopoulou P, Loizidis T, Guiba-Tziampiri O (1999) Effect of ketamine on hypoxic-ischemic brain damage in newborn rats. Brain Res 819:1–7

    CAS  PubMed  Google Scholar 

  • Spiacci A Jr, Kanamaru F, Guimaraes FS, Oliveira RM (2008) Nitric oxide-mediated anxiolytic-like and antidepressant-like effects in animal models of anxiety and depression. Pharmacol Biochem Behav 88:247–255

    CAS  PubMed  Google Scholar 

  • Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85:367–370

    CAS  PubMed  Google Scholar 

  • Suzuki E, Yagi G, Nakaki T, Kanba S, Asai M (2001) Elevated plasma nitrate levels in depressive states. J Affect Disord 63:221–224

    CAS  PubMed  Google Scholar 

  • Volke V, Wegener G, Bourin M, Vasar E (2003) Antidepressant- and anxiolytic-like effects of selective neuronal NOS inhibitor 1-(2-trifluoromethylphenyl)-imidazole in mice. Behav Brain Res 140:141–147

    CAS  PubMed  Google Scholar 

  • Wlaź P, Kasperek R, Wlaź A, Szumiło M, Wróbel A, Nowak G, Poleszak E (2011) NMDA and AMPA receptors are involved in the antidepressant-like activity of tianeptine in the forced swim test in mice. Pharmacol Rep 63:1526–1532

    PubMed  Google Scholar 

  • Wu J, Kikuchi T, Wang Y, Sato K, Okumura F (2000) NOx concentrations in the rat hippocampus and striatum have no direct relationship to anaesthesia induced by ketamine. Br J Anaesth 84:183–189

    CAS  PubMed  Google Scholar 

  • Yamamoto M, Koshimura K, Sohmiya M, Murakami Y, Kato Y (2004) Effect of erythropoietin on nitric oxide production in the rat hippocampus using in vivo brain microdialysis. Neuroscience 128:163–168

    CAS  PubMed  Google Scholar 

  • Young LT (2002) Neuroprotective effects of antidepressant and mood stabilizing drugs. J Psychiatry Neurosci 27:8–9

    PubMed Central  PubMed  Google Scholar 

  • Yuan TT, Qiao H, Dong SP, An SC (2011) Activation of hippocampal D1 dopamine receptor inhibits glutamate-mediated depression induced by chronic unpredictable mild stress in rats. Sheng Li Xue Bao (Acta Physiologica Sinica) 63:333–341

    CAS  Google Scholar 

  • Zeni AL, Zomkowski AD, Dal-Cim T, Maraschin M, Rodrigues AL, Tasca CI (2011) Antidepressant-like and neuroprotective effects of Aloysia gratissima: investigation of involvement of l-arginine-nitric oxide-cyclic guanosine monophosphate pathway. J Ethnopharmacol 137:864–874

    PubMed  Google Scholar 

  • Zomkowski AD, Santos AR, Rodrigues AL (2006) Putrescine produces antidepressant-like effects in the forced swimming test and in the tail suspension test in mice. Prog Neuropsychopharmacol Biol Psychiatry 30:1419–1425

    CAS  PubMed  Google Scholar 

  • Zomkowski AD, Engel D, Gabilan NH, Rodrigues AL (2010) Involvement of NMDA receptors and l-arginine-nitric oxide-cyclic guanosine monophosphate pathway in the antidepressant-like effects of escitalopram in the forced swimming test. Eur Neuropsychopharmacol 20:793–801

    CAS  PubMed  Google Scholar 

  • Zomkowski AD, Engel D, Cunha MP, Gabilan NH, Rodrigues AL (2012) The role of the NMDA receptors and l-arginine-nitric oxide-cyclic guanosine monophosphate pathway in the antidepressant-like effect of duloxetine in the forced swimming test. Pharmacol Biochem Behav 103:408–417

    CAS  PubMed  Google Scholar 

  • Zhou W, Wang N, Yang C, Li XM, Zhou ZQ, Yang JJ (2014) Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex. Eur Psychiatry 29:419–423

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES), Fundação de Apoio a Pesquisa Científica e Tecnológica do Estado de Santa Catarina (FAPESC), Rede Instituto Brasileiro de Neurociência (IBN-Net/CNPq), Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC) Project/PRONEX Program (CNPq/FAPESC).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Lúcia S. Rodrigues.

Additional information

Handling Editor: V. Bolshakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cunha, M.P., Pazini, F.L., Ludka, F.K. et al. The modulation of NMDA receptors and l-arginine/nitric oxide pathway is implicated in the anti-immobility effect of creatine in the tail suspension test. Amino Acids 47, 795–811 (2015). https://doi.org/10.1007/s00726-014-1910-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1910-0

Keywords

Navigation