Skip to main content
Log in

Functional characterisation of an engineered multidomain human P450 2E1 by molecular Lego

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The human cytochrome P450s constitute an important family of monooxygenase enzymes that carry out essential roles in the metabolism of endogenous compounds and foreign chemicals. We present here results of a fusion between a human P450 enzyme and a bacterial reductase that for the first time is shown does not require the addition of lipids or detergents to achieve wild-type-like activities. The fusion enzyme, P450 2E1–BMR, contains the N-terminally modified residues 22–493 of the human P450 2E1 fused at the C-terminus to residues 473–1049 of the P450 BM3 reductase (BMR). The P450 2E1–BMR enzyme is active, self-sufficient and presents the typical marker activities of the native human P450 2E1: the hydroxylation of p-nitrophenol (K M=1.84±0.09 mM and k cat of 2.98±0.04 nmol of p-nitrocatechol formed per minute per nanomole of P450) and chlorzoxazone (K M=0.65±0.08 mM and k cat of 0.95±0.10 nmol of 6-hydroxychlorzoxazone formed per minute per nanomole of P450). A 3D model of human P450 2E1 was generated to rationalise the functional data and to allow an analysis of the surface potentials. The distribution of charges on the model of P450 2E1 compared with that of the FMN domain of BMR provides the ground for the understanding of the interaction between the fused domains. The results point the way to successfully engineer a variety of catalytically self-sufficient human P450 enzymes for drug metabolism studies in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

δ-ALA:

δ-Aminolevulenic acid

BMR:

Cytochrome P450 reductase domain of P450 BM3

CPR:

Cytochrome P450 NADPH-dependent oxidoreductase

DEAE:

(Diethylamino)ethyl

DTT:

Dithiothreitol

HPLC:

High-performance liquid chromatography

IPTG:

Isopropyl-β-D-thiogalactopyranoside

P450 BM3:

Bacterial cytochrome P450 from Bacillus megaterium

P450 BMP:

Haem domain of P450 BM3

P450 2E1:

Human cytochrome P450 2E1

SRS:

Substrate recognition site

References

  1. Poulos TL (1995) Cytochrome P450. Curr Opin Struct Biol 5:767–774

    Article  PubMed  CAS  Google Scholar 

  2. Nelson DR (1999) Cytochrome P450 and the individuality of species. Arch Biochem Biophys 369:1–15

    Article  PubMed  CAS  Google Scholar 

  3. Hasler JA, Estabrook RW, Murray M, Pikuleva I, Waterman M, Capdevila J, Holla V, Helvig C, Falck JR, Farrell G, Kaminsky LS, Spivack SD, Boitier E, Beaune P (1999) Human cytochrome P450. Mol Aspects Med 20:1–137

    Article  CAS  Google Scholar 

  4. Guengerich FP (2001) Common and uncommon cytochrome P450 reactions related to metabolism and toxicity. Chem Res Toxicol 14:611–650

    Article  PubMed  CAS  Google Scholar 

  5. Nelson DR, Strobel HW (1988) On the membrane topology of vertebrate cytochrome P450 proteins. J Biol Chem 263:6038–6050

    PubMed  CAS  Google Scholar 

  6. Guengerich FP, Kim DH, Iwasaki M (1991) Role of human cytochrome P450 2E1 in the oxidation of many low molecular weight cancer suspects. Chem Res Toxicol 4:168–179

    Article  PubMed  CAS  Google Scholar 

  7. Lieber CS (1997) Cytochrome P-4502E1: its physiological and pathological role. Physiol Rev 77:517–538

    PubMed  CAS  Google Scholar 

  8. Tanaka E, Terada M, Misawa S (2000) Cytochrome P450 2E1: its clinical and toxicological role. J Clin Pharm Ther 25:165–175

    Article  PubMed  CAS  Google Scholar 

  9. Chen W, Koenigs LL, Thompson SJ, Peter RM, Rettie AE, Trager WF, Nelson SD (1998) Oxidation of acetaminophen to its toxic quinone imine and nontoxic catechol metabolites by baculovirus-expressed and purified human cytochromes P450 2E1 and 2A6. Chem Res Toxicol 11:295–301

    Article  PubMed  CAS  Google Scholar 

  10. Peter R, Bocker R, Beaune PH, Iwasaki M, Guengerich FP, Yang CS (1990) Hydroxylation of chlorzoxazone as a specific probe for human liver cytochrome P-450IIE1. Chem Res Toxicol 3:566–573

    Article  PubMed  CAS  Google Scholar 

  11. Koop DR (1986) Hydroxylation of p-nitrophenol by rabbit ethanol-inducible cytochrome P-450 isozyme 3a. Mol Pharmacol 29:399–404

    PubMed  CAS  Google Scholar 

  12. Fantuzzi A, Fairhead M, Gilardi G (2004) Direct electrochemistry of immobilized human cytochrome P450 2E1. J Am Chem Soc 126:5040–5041

    Article  PubMed  CAS  Google Scholar 

  13. Narhi LO, Fulco AJ (1986) Characterization of a catalytically self-sufficient 119,000-Dalton cytochrome P-450 monooxygenase induced by barbituates in Bacillus megaterium. J Biol Chem 261:7160–7169

    PubMed  CAS  Google Scholar 

  14. Narhi LO, Fulco AJ (1987) Identification and characterisation of two functional domains in cytochrome P-450BM-3, a catalytically self-sufficient monooxygenase induced by barbituates in Bacillus megaterium. J Biol Chem 262:6683–6690

    PubMed  CAS  Google Scholar 

  15. Lewis DF, Hlavica P (2000) Interactions between redox partners in various cytochrome P450 systems: functional and structural aspects. Biochim Biophys Acta 1460:353–374

    Article  PubMed  CAS  Google Scholar 

  16. Boddupalli SS, Estabrook RW, Peterson JA (1990) Fatty acid monooxygenation by cytochrome P-450BM-3. J Biol Chem 265:4233–4239

    PubMed  CAS  Google Scholar 

  17. Fang C, Koyabashi Y, Halpert JR (1997) Stoichometry of 7-ethoxycoumarin metabolism by cytochrome P450 2B1 wild-type and five active-site mutants. FEBS Lett 416:77–80

    Article  PubMed  CAS  Google Scholar 

  18. Mayuzumi H, Sambongi C, Hiroya K, Shimizu T, Tateishi T, Hatano M (1993) Effect of mutations of ionic amino acids of cytochrome P450 1A2 on catalytic activities toward 7-ethoxycoumarin and methanol. Biochemistry 32:5622–5628

    Article  PubMed  CAS  Google Scholar 

  19. Perret A, Pompon D (1998) Electron shuttle between membrane-bound cytochrome P450 3A4 and b5 rules uncoupling mechanisms. Biochemistry 37:11412–11424

    Article  PubMed  CAS  Google Scholar 

  20. Yun CH, Miller GP, Guengerich FP (2000) Rate-determining steps in phenacetin oxidations by human cytochrome P450 1A2 and selected mutants. Biochemistry 39:11319–11329

    Article  PubMed  CAS  Google Scholar 

  21. Noble MA, Miles CS, Chapman SK, Lysek DA, Mackay AC, Reid GA, Hanzlick RP, Munro AW (1999) Roles of key active-site residues in flavocytochrome P450 BM3. Biochem J 339:371–379

    Article  PubMed  CAS  Google Scholar 

  22. Munro AW, Leys DG, McLean KJ, Marshall KR, Ost TW, Daff S, Miles CS, Chapman SK, Lysek DA, Moser CC, Page CC, Dutton PL (2002) P450 BM3: the very model of a modern flavocytochrome. Trends Biochem Sci 27:250–257

    Article  PubMed  CAS  Google Scholar 

  23. Giannini S, Fairhead MJ, Gilardi G (2001) Engineering a soluble, catalytically self-sufficient human P450 for nanobiotechnology. Biochem Soc Trans 29:31

    Google Scholar 

  24. Gilardi G, Meharenna YT, Tsotsou GE, Sadeghi SJ, Fairhead M, Giannini S (2002) Molecular Lego: design of molecular assemblies of P450 enzymes for nanobiotechnology. Biosens Bioelectron 17:133–145

    Article  PubMed  CAS  Google Scholar 

  25. Fisher CW, Schet MS, Caule DL, Martin-Wintrom CA, Estabrook RW (1992) High-level expression in Escherichia coli of enzymatically active fusion proteins containing the domains of mammalian cytochromes p450 and NADPH-p450 reductase flavoprotein. Proc Natl Acad Sci USA 89:10817–10821

    Article  PubMed  CAS  Google Scholar 

  26. Shet MS, Fisher CW, Arlotto MP, Shakleton CHL, Holmans PL, Martin-Wixtrom CA, Saeki Y, Estabrook RW (1994) Purification and enzymatic properties of a recombinant fusion protein expressed in Escherichia coli containing the domains of bovine 17A and rat NADPH-P450 reductase. Arch Biochem Biophys 311:402–417

    Article  PubMed  CAS  Google Scholar 

  27. Shet MS, Fisher CW, Holmans PL, Estabrook RW (1993) Human cytochrome p450 3A4: enzymatic properties of a purified recombinant fusion protein containing NADPH-p450 reductase. Proc Natl Acad Sci USA 90:11748–11752

    Article  PubMed  CAS  Google Scholar 

  28. Harlow GR, Halpert JR (1996) Mutagenesis study of Asp-290 in cytochrome p450 2B11 using a fusion protein with rat NADPH-cytochrome p450 reductase. Arch Biochem Biophys 326:85–92

    Article  PubMed  CAS  Google Scholar 

  29. Lu P, Alterman MA, Chaurasia CS, Bambal RB, Hanzlick RP (1997) Heme-coordinating analogs of lauric acid as inhibitors of fatty acid ω-hydroxylation. Arch Biochem Biophys 337:1–7

    Article  PubMed  CAS  Google Scholar 

  30. Gilardi G, Meharenna YT, Tsotsou GE, Sadeghi SJ, Fairhead M, Giannini S (2002) Molecular Lego: design of molecular assemblies of P450 enzymes for nanobiotechnology. Biosens Bioelectron 17(1–2):133–145

    Article  PubMed  CAS  Google Scholar 

  31. Sadeghi SJ, Meharenna YT, Fantuzzi A, Valetti F, Gilardi G (2000) Engineering artificial redox chains by Molecular Lego. Faraday Discuss 116:135–153

    Article  PubMed  CAS  Google Scholar 

  32. Gillam EM, Guo Z, Guengerich FP (1994) Expression of modified human cytochrome P450 2E1 in Escherichia coli, purification, and spectral and catalytic properties. Arch Biochem Biophys 312:59–66

    Article  PubMed  CAS  Google Scholar 

  33. Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver micrososmes. J Biol Chem 239:2370–2385

    PubMed  CAS  Google Scholar 

  34. Ozols J, Strittmatter P (1964) The interaction of porphyrins and metalloporphyrins with apocytochrome b5. J Biol Chem 239:1018–1023

    PubMed  CAS  Google Scholar 

  35. Yuan R, Madani S, Wei XX, Reynolds K, Huang SM (2002) Evaluation of cytochrome P450 probe substrates commonly used by the pharmaceutical industry to study in vitro drug interactions. Drug Metab Dispos 30:1311–1319

    Article  PubMed  CAS  Google Scholar 

  36. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  PubMed  CAS  Google Scholar 

  37. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  38. Pontius J, Richelle J, Wodak SJ (1996) Quality assessment of protein 3D structures using standard atomic volumes. J Mol Biol 264:121–136

    Article  PubMed  CAS  Google Scholar 

  39. Vriend G (1996) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8:52–56

    Article  Google Scholar 

  40. Valetti F, Sadeghi SJ, Meharenna YT, Leliveld SR, Gilardi G (1998) Engineering multi-domain redox proteins containing flavodoxin as bio-transformer: preparatory studies by rational design. Biosens Bioelectron 13:675–685

    Article  PubMed  CAS  Google Scholar 

  41. Nishimoto M, Clark JE, Masters BSS (1993) Cytochrome P450 4A4: expression in Escherichia coli, purification, and characterisation of catalytic properties. Biochemistry 32:8863–8870

    Article  PubMed  CAS  Google Scholar 

  42. Gillam EMJ, Guo Z, Martin MV, Jenkins CM, Guengerich FP (1995) Expression of cytochrome P450 2D6 in Escherichia coli, purification, and spectral and catalytic characterization. Arch Biochem Biophys 319:540–550

    Article  PubMed  CAS  Google Scholar 

  43. Kery V, Elleder D, Kraus JP (1995) δ-Aminolevulinate increase heme saturation and yield of human cystathionine β-synthase expressed in Escherichia coli. Arch Biochem Biophys 316:24–29

    Article  PubMed  CAS  Google Scholar 

  44. Woodard SI, Dailey HA (1995) Regulation of heme biosynthesis in Escherichia coli. Arch Biochem Biophys 316:110–115

    Article  PubMed  CAS  Google Scholar 

  45. Koop DR (1990) Inhibition of ethanol-inducible cytochrome P450IIE1 by 3-amino-1,2,4-triazole. Chem Res Toxicol 3:377–383

    Article  PubMed  CAS  Google Scholar 

  46. Porter TD (1994) Mutagenesis at a highly conserved phenylalanine in cytochrome P450 2E1 affects heme incorporation and catalytic activity. Biochemistry 33:5942–5946

    Article  PubMed  CAS  Google Scholar 

  47. Larson JR, Coon MJ, Porter TD (1991) Alcohol-inducible cytochrome P-450IIE1 lacking the hydrophobic NH2-terminal segment retains catalytic activity and is membrane-bound when expressed in Escherichia coli. J Biol Chem 266:7321–7324

    PubMed  CAS  Google Scholar 

  48. Dong JS, Porter TD (1996) Coexpression of mammalian cytochrome P450 and reductase in Escherichia coli. Arch Biochem Biophys 327:254–259

    Article  PubMed  CAS  Google Scholar 

  49. Zerilli A, Ratanasavanh D, Lucas D, Goasduff T, Dreano Y, Menard C, Picart D, Berthou F (1997) Both cytochromes P450 2E1 and 3A are involved in the O-hydroxylation of p-nitrophenol, a catalytic activity known to be specific for p450 2E1. Chem Res Toxicol 10:1205–1212

    Article  PubMed  CAS  Google Scholar 

  50. Chen W, Peter RM, McArdle S, Thummel KE, Sigle RO, Nelson SD (1996) Baculovirus expression and purification of human and rat cytochrome P450 2E1. Arch Biochem Biophys 335:123–130

    Article  PubMed  CAS  Google Scholar 

  51. Umeno M, McBride OW, Yang CS, Gelboin HV, Ginzalez FJ (1988) Human ethanol-inducible P450IIEI: complete gene sequence, promoter characterization, chromosome mapping and cDNA-directed expression. Biochemistry 27:9006–9013

    Article  PubMed  CAS  Google Scholar 

  52. Sevrioukova IF, Li H, Zhang H, Peterson JA, Poulos TL (1999) Structure of a cytochrome P450-redox partner electron-transfer complex. Proc Natl Acad Sci USA 96:1863–1868

    Article  PubMed  CAS  Google Scholar 

  53. Gotoh O (1992) Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J Biol Chem 267:83–90

    PubMed  CAS  Google Scholar 

  54. Williams PA, Cosme J, Sridhar V, Johnson EF, McRee DE (2000) Mammalian microsomal cytochrome p450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol Cell 5:121–131

    Article  PubMed  CAS  Google Scholar 

  55. Gorsky LD, Koop DR, Coon MJ (1984) On the stoichiometry of the oxidase and monooxygenase reactions catalysed by liver microsomal P-450. J Biol Chem 259:6812–6817

    PubMed  CAS  Google Scholar 

  56. Albano EA (1991) Role of ethanol inducible cytochrome p450 (p450IIE1) in catalyzing the free radicle activation of aliphatic alcohols. Biochem Pharmocol 41:1895–1902

    Article  CAS  Google Scholar 

  57. Wang MH, Patten CJ, Yang GY, Paranawithana SR, Tan Y, Yang CS (1996) Expression and coupling of human cytochrome P450 2E1 and NADPH-cytochrome P450 oxidoreductase in dual expression and co-infection systems with baculovirus in insect cells. Arch Biochem Biophys 334:380–388

    Article  PubMed  CAS  Google Scholar 

  58. Patten CJ, Koch P (1995) Baculovirus expression of human P450 2E1 and cytochrome b5: spectral and catalytic properties and effect of b5 on the stoichiometry of P450 2E1-catalyzed reactions. Arch Biochem Biophys 317:504–513

    Article  PubMed  CAS  Google Scholar 

  59. Bridges A, Gruenke L, Chang YT, Vasker IA, Loew G, Waskell L (1998) Identification of the binding site on cytochrome P450 2B4 for cytochrome b5 & cytochrome P450 reductase. J Biol Chem 273:17036–17049

    Article  PubMed  CAS  Google Scholar 

  60. Helvig C, Capdevila JH (2000) Biochemical characterization of rat P450 2C11 fused to rat or bacterial NADPH-P450 reductase domains. Biochemistry 39:5196–5205

    Article  PubMed  CAS  Google Scholar 

  61. Davydov DR, Kariakin AA, Petushkova NA, Peterson JA (2000) Association of cytochromes P450 with their reductases: opposite sign of the electrostatic interactions in P450BM-3 as compared with the microsomal 2B4 system. Biochemistry 39:6489–6497

    Article  PubMed  CAS  Google Scholar 

  62. Zhao Q, Modi S, Smith G, Paine M, McDonagh PD, Wolf CR, Tew D, Lian LY, Roberts GC, Driessen HP (1999) Crystal structure of the FMN-binding domain of human cytochrome P450 reductase at 1.93 Å resolution. Protein Sci 8:298–306

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Marcellus Ubbink for the gift of soluble bovine cytochrome b 5. This work was supported by a BBSRC studentship (UK), number 99/B1/E/05953, the Italian National Research Council (CNR) and Nano Biodesign Ltd (London).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Gilardi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fairhead, M., Giannini, S., Gillam, E.M. et al. Functional characterisation of an engineered multidomain human P450 2E1 by molecular Lego. J Biol Inorg Chem 10, 842–853 (2005). https://doi.org/10.1007/s00775-005-0033-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0033-1

Keywords

Navigation