Skip to main content
Log in

A new heterobinuclear FeIIICuII complex with a single terminal FeIII–O(phenolate) bond. Relevance to purple acid phosphatases and nucleases

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A novel heterobinuclear mixed valence complex [FeIIICuII(BPBPMP)(OAc)2]ClO4, 1, with the unsymmetrical N5O2 donor ligand 2-bis[{(2-pyridylmethyl)aminomethyl}-6-{(2-hydroxybenzyl)(2-pyridylmethyl)}aminomethyl]-4-methylphenol (H2BPBPMP) has been synthesized and characterized. A combination of data from mass spectrometry, potentiometric titrations, X-ray absorption and electron paramagnetic resonance spectroscopy, as well as kinetics measurements indicates that in ethanol/water solutions an [FeIII–(μ)OH–CuIIOH2]+ species is generated which is the likely catalyst for 2,4-bis(dinitrophenyl)phosphate and DNA hydrolysis. Insofar as the data are consistent with the presence of an FeIII-bound hydroxide acting as a nucleophile during catalysis, 1 presents a suitable mimic for the hydrolytic enzyme purple acid phosphatase. Notably, 1 is significantly more reactive than its isostructural homologues with different metal composition (FeIIIMII, where MII is ZnII, MnII, NiII, or FeII). Of particular interest is the observation that cleavage of double-stranded plasmid DNA occurs even at very low concentrations of 1 (2.5 μM), under physiological conditions (optimum pH of 7.0), with a rate enhancement of 2.7×107 over the uncatalyzed reaction. Thus, 1 is one of the most effective model complexes to date, mimicking the function of nucleases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

2,4-BDNPP:

2,4-Bis(dinitrophenol)phosphate

n-Bu4NPF6:

Tetrabutylammonium hexafluorophosphate

HBPMP:

2,6-Bis[(bis(2-pyridylmethyl)amino)methyl]-4-methylphenol

DMSO:

Dimethylsulfoxide

EPR:

Electron paramagnetic resonance

EXAFS:

Extended X-ray absorption fine structure

H2BPBPMP:

2-Bis[{(2-pyridylmethyl)aminomethyl}-6-{(2-hydroxylbenzyl)(2-pyridylmethyl)}aminomethyl]-4-methylphenol

MES:

2-Morpholinoethanesulfonic acid

MOPS:

3-(N-Morpholino)propanesulfonic acid

PAP:

Purple acid phosphatase

XAS:

X-ray absorption spectroscopy

References

  1. Schenk G, Ge Y, Carrington LE, Wynne CJ, Searle IR, Carroll BJ, Hamilton S, de Jersey J (1999) Arch Biochem Biophys 370:183–189

    Google Scholar 

  2. Klabunde T, Krebs B (1997) Struct Bond (Berlin) 1:177–198

    Google Scholar 

  3. Twitchett MB, Sykes AG (1999) Eur J Inorg Chem 12:2105–2115

    Google Scholar 

  4. Sträter N, Lipscomb WN, Klabunde T, Krebs B (1996) Angew Chem Int Ed 35:2024–2055

    Google Scholar 

  5. Merkx M, Averill BA (1998) Biochemistry 37:8490–8497

    Google Scholar 

  6. Campbell HD, Dionysius DA, Keough DT, Wilson BE, de Jersey J, Zerner B (1978) Biochem Biophys Res Commun 82:615–620

    Google Scholar 

  7. Marshall K, Nash K, Haussman G, Cassady I, Hume D, de Jersey J, Hamilton S (1997) Arch Biochem Biophys 345:230–236

    Google Scholar 

  8. Ljusberg J, Ek-Rylander B, Andersson G (1999) Biochem J 343:63–69

    Google Scholar 

  9. Ketcham CM, Roberts RM, Simmen RCM, Nick HS (1989) J Biol Chem 264:557–563

    Google Scholar 

  10. Halleen J, Hentunen TA, Hellman J, Väänänen HK (1996) J Bone Miner Res 11:1444–1452

    Google Scholar 

  11. Robinson DB, Glew RH (1980) J Biol Chem 255:5864–5870

    Google Scholar 

  12. Oddie GW, Schenk G, Angel NZ, Walsh N, Guddat LW, de Jersey J, Cassady AI, Hamilton SE, Hume DA (2000) Bone 27:575–584

    Google Scholar 

  13. Beck JL, McConaghie LA, Summors AC, Arnold WN, de Jersey J, Zerner B (1986) Biochim Biophys Acta 869:61–68

    Google Scholar 

  14. Durmus A, Eicken C, Sift BH, Kratel A, Kappl R, Hüttermann J, Krebs B (1999) Eur J Biochem 260:709–716

    Google Scholar 

  15. Kostrewa D, Wyss M, D’Arcy A, van Loon APGM (1999) J Mol Biol 288:965–974

    Google Scholar 

  16. Schenk G, Guddat LW, Ge Y, Carrington LE, Hume DA, Hamilton S, de Jersey J (2000) Gene 250:117–125

    Google Scholar 

  17. Schenk G, Korsinczky MLJ, Hume DA, Hamilton S, de Jersey J (2000) Gene 255:419–424

    Google Scholar 

  18. Guddat LW, McAlpine AS, Hume DA, Hamilton S, de Jersey J, Martin J (1999) Structure 7:757–767

    Google Scholar 

  19. Lindqvist Y, Johansson E, Kaija H, Vihko P, Schneider G (1999) J Mol Biol 291:135–147

    Google Scholar 

  20. Uppenberg J, Lindqvist F, Svensson C, Ek-Rylander B, Andersson G (1999) J Mol Biol 290:201–211

    Google Scholar 

  21. Sträter N, Klabunde T, Tucker P, Witzel H, Krebs B (1995) Science 268:1489–1492

    Google Scholar 

  22. Klabunde T, Sträter N, Fröhlich R, Witzel H, Krebs B (1996) J Mol Biol 259:737–748

    Google Scholar 

  23. Schenk G, Carrington LE, Hamilton SE, de Jersey J, Guddat LW (1999) Acta Cryst D55:2051–2052

    Google Scholar 

  24. Schenk G, Gahan LR, Carrington LE, Valizadeh M, Hamilton SE, de Jersey J, Guddat LW (2004) Proc Natl Acad Sci USA 102:273–278

    Google Scholar 

  25. Twitchett MB, Schenk G, Aquino MAS, Yiu DTY, Lau TC, Sykes AG (2002) Inorg Chem 41:5787–5794

    Google Scholar 

  26. Beck JL, Keough DT, de Jersey J, Zerner B (1984) Biochim Biophys Acta 791:357–363

    Google Scholar 

  27. Beck JL, McArthur MJ, de Jersey J, Zerner B (1988) Inorg Chim Acta 153:39–44

    Google Scholar 

  28. Beck JL, Durack MCA, Hamilton SE, de Jersey J (1999) Inorg Biochem 73:245–252

    Google Scholar 

  29. Merkx M, Averill BA (1999) J Am Chem Soc 121:6683–6689

    Google Scholar 

  30. Schenk G, Boutchard CL, Carrington LE, Noble CJ, Moubaraki B, Murray KS, de Jersey J, Hanson GR, Hamilton S (2001) J Biol Chem 276:19084–19088

    Google Scholar 

  31. Wilcox DE (1996) Chem Rev 96:2435–2458

    Google Scholar 

  32. Valizadeh M, Schenk G, Nash K, Oddie GW, Guddat LW, Hume DA, de Jersey J, Burke TR Jr, Hamilton S (2004) Arch Biochem Biophys 424:154–162

    Google Scholar 

  33. Batista SC, Neves A, Bortoluzzi AJ, Vencato I, Peralta RA, Szpoganicz B, Aires VVE, Terenzi H, Severino PC (2003) Inorg Chem Commun 6:1161–1165

    Google Scholar 

  34. Karsten P, Neves A, Bortoluzzi AJ, Lanznaster M, Drago V (2002) Inorg Chem 41:4624–4626

    Google Scholar 

  35. Karsten P, Neves A, Bortoluzzi AJ, Strähle J, Maichle-Mössmer C (2002) Inorg Chem Commun 5:434–438

    Google Scholar 

  36. Lanznaster M, Neves A, Bortoluzzi AJ, Szpoganicz B, Schwingel E (2002) Inorg Chem 41:5641–5643

    Google Scholar 

  37. Neves A, de Brito M, Vencato I, Drago V, Griesar K, Haase W (1996) Inorg Chem 35:2360–2368

    Google Scholar 

  38. Neves A, de Brito MA, Drago V, Griesar K, Haase W (1995) Inorg Chim Acta 237:131–135

    Google Scholar 

  39. Holman T, Andersen KA, Anderson OP, Hendrich MP, Juarez-Garcia C, Münck E, Que L Jr (1990) Angew Chem Int Ed 29:921–923

    Google Scholar 

  40. Belle C, Gautier-Luneau I, Gellon G, Pierre JL, Morgenstern-Badarau I, Saint-Aman E (1997) J Chem Soc Dalton Trans 3543–3546

  41. Ghiladi M, McKenzie CJ, Meier A, Powell AK, Ulstrup J, Wocadlo S (1997) J Chem Soc Dalton Trans 21:4011–4018

    Google Scholar 

  42. Ghiladi M, Jensen KB, Jiang J, McKenzie CJ, Morup S, Sotofte I, Ulstrup J (1999) J Chem Soc Dalton Trans 2675–2681

  43. Spek AL (1996) HELENA: CAD-4 data reduction program. University of Utrecht, The Netherlands

    Google Scholar 

  44. Spek AL (1997) PLATON: molecular geometry and plotting program. University of Utrecht, The Netherlands

    Google Scholar 

  45. Sheldrick GM (1990) SHELXS97: program for the solution of crystal structures. University of Göttingen, Germany

    Google Scholar 

  46. Sheldrick GM (1997) SHELXL97: program for the refinement of crystal structures. University of Göttingen, Germany

    Google Scholar 

  47. Zsolnai L (1997) ZORTEP: an interactive ORTEP program. University of Heidelberg, Germany

    Google Scholar 

  48. Martell AE, Motekaits RJ (1992) Determination and use of Stability constants. VCH Publishers, New York

    Google Scholar 

  49. Gagne RR, Koval CA, Lisensky GC (1980) Inorg Chem 19:2854–2855

    Google Scholar 

  50. Ravel B (2001) J Synchrotron Rad 8:314–316

    Google Scholar 

  51. Rehr JJ, Mustre de Leon J, Zabinsky SI, Albers RC (1991) J Am Chem Soc 113:5135–5140

    Google Scholar 

  52. Newville M (2001) J Synchrotron Rad 8:322–324

    Google Scholar 

  53. Hanson GR, Gates KE, Noble CJ, Griffin M, Mitchell A, Benson S (2004) J Inorg Biochem 98:903–916

    Google Scholar 

  54. Rossi LM, Neves A, Hörner R, Terenzi H, Szpoganicz B, Sugai J (2002) Inorg Chim Acta 337:366

    Google Scholar 

  55. Neves A, Terenzi H, Hörner R, Horn A Jr, Szpoganicz B, Sugai J (2001) Inorg Chem Commun 4:388–391

    Google Scholar 

  56. Scarpellini M, Neves A, Hörner R, Bortoluzzi AJ, Szpoganicz B, Zucco C, Silva RAN, Drago V, Mangrich AS, Ortiz WA, Passos WAC, Oliveira MCB, Terenzi H (2003) Inorg Chem 42:8353–8365

    Google Scholar 

  57. Lambert E, Chabut B, Chardon-Noblat S, Deronzier A, Chottard G, Bousseksou A, Tuchagues JP, Laugier J, Bardet M, Latour JM (1997) J Am Chem Soc 119:9424–9437

    Google Scholar 

  58. Westre TE, Kennepohl P, DeWitt JG, Hedman B, Hodgson KO, Solomon EI (1997) J Am Chem Soc 119:6297–6314

    Google Scholar 

  59. Roe AL, Schneider DJ, Mayer RJ, Pyrz JW, Widom J, Que L (1984) J Am Chem Soc 106:1676–1681

    Google Scholar 

  60. Juarez-Garcia C, Hendrich MP, Holma TR, Que L, Munck E (1991) J Am Chem Soc 113:518–525

    Google Scholar 

  61. Smith TD, Pilbrow JR (1974) Coord Chem Rev 13:173–278

    Google Scholar 

  62. Dessens SE, Merrill CL, Saxton RJ, Ilaria RL Jr, Lindsey JW, Wilson LJ (1982) J Am Chem Soc 104:4357–4361

    Google Scholar 

  63. Bunton CA, Farber SJ (1969) J Org Chem 34:767–772

    Google Scholar 

  64. Aquino MAS, Lim JS, Sykes AG (1994) J Chem Soc Dalton Trans 429–436

  65. Smoukov SK, Quaroni L, Wang X, Doan PE, Hoffman BM, Que L Jr (2002) J Am Chem Soc 124:2595–2603

    Google Scholar 

  66. Sreedhara A, Freed JD, Cowan JA (2000) J Am Chem Soc 122:8814–8824

    Google Scholar 

  67. Cowan JA (2001) Curr Opin Chem Biol 5:634–642

    Google Scholar 

  68. Sreedhara A, Cowan JA (2001) J Biol Inorg Chem 6:337–347

    Google Scholar 

Download references

Acknowledgements

Financial support was received from CNPq, PRONEX (Brazil). M.L. and P.C.S. are grateful to CNPq (Brazil) for a scholarship. XAS data collection was performed at the Australian National Beamline Facility with support from the Australian Synchrotron Research Program, which is funded by the Commonwealth of Australia under the Major National Research Facilities Program. We would also like to thank G. Foran and J. Hester for their help in data collection. We are grateful to the Australian Research Council for funding this research and for grants to purchase the EPR facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ademir Neves.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanznaster, M., Neves, A., Bortoluzzi, A.J. et al. A new heterobinuclear FeIIICuII complex with a single terminal FeIII–O(phenolate) bond. Relevance to purple acid phosphatases and nucleases. J Biol Inorg Chem 10, 319–332 (2005). https://doi.org/10.1007/s00775-005-0635-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0635-7

Keywords

Navigation