Skip to main content
Log in

Solution behavior of hematin under acidic conditions and implications for its interactions with chloroquine

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

During the intraerythrocytic stage of its lifecycle, the malaria parasite digests host erythrocyte hemoglobin, producing free ferriprotoporhyrin IX (FP). Crystallization of FP into hemozoin is essential for its detoxification and is the target of quinoline antimalarials. To gain further insight into the mechanism of hemozoin formation and quinoline action we have studied the behavior of FP and related derivatives in 40% methanol in water at different concentrations across a broad pH range (2–12). The complex behavior of FP can be modeled by incorporating a pH-dependent dimerization constant that reflects the influence of the ionization state of the propionate groups on the level of self-association. The analysis reveals that aqua-ligated FP has a low propensity to self-associate and that the predominant self-associated species are homodimeric hydroxide-ligated FP and heterodimeric aqua/hydroxide-ligated FP. The latter is predicted to be the main self-associated species at the pH of the parasite digestive vacuole. The state of FP also affects its interaction with chloroquine, with maximum affinity under neutral conditions and a more than 1,000-fold decrease in affinity under acidic (pH 2) and basic (pH 12) conditions. First-derivative absorption spectra of the chloroquine–FP complex indicate that the high-affinity interaction requires the chloroquine ring in its neutral aminoquinoline form and this in turn requires at least one of the FP species in the complex to be aqua-ligated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CQ:

Chloroquine

deuteroFP:

Iron(III) deuteroprotoporphyrin IX chloride

DV:

Digestive vacuole

FP:

Ferriprotoporphyrin IX

FPdme:

Iron(III) dimethylester protoporphyrin IX chloride

mesoFP:

Iron(III) mesoprotoporphyrin IX chloride

References

  1. Slomianny C (1990) Blood Cells 16:369–378

    CAS  PubMed  Google Scholar 

  2. Abu Bakar NA, Klonis N, Hanssen E, Chan C, Tilley L (2010) J Cell Sci 123:441–450

    Article  CAS  PubMed  Google Scholar 

  3. Yayon A, Cabantchik ZI, Ginsburg H (1984) EMBO J 3:2695–2700

    CAS  PubMed  Google Scholar 

  4. Rosenthal PJ, Meshnick SR (1996) Mol Biochem Parasitol 83:131–139

    Article  PubMed  Google Scholar 

  5. Banerjee R, Liu J, Beatty W, Pelosof L, Klemba M, Goldberg DE (2002) Proc Natl Acad Sci USA 99:990–995

    Article  CAS  PubMed  Google Scholar 

  6. Fitch CD, Cai GZ, Chen YF, Shoemaker JD (1999) Biochim Biophys Acta 1454:31–37

    CAS  PubMed  Google Scholar 

  7. Jackson KE, Klonis N, Ferguson DJP, Adisa A, Dogovski C, Tilley L (2004) Mol Microbiol 54:109–122

    Article  CAS  PubMed  Google Scholar 

  8. Pisciotta JM, Coppens I, Tripathi AK, Scholl PF, Shuman J, Bajad S, Shulaev V, Sullivan DJ Jr (2007) Biochem J 402:197–204

    Article  CAS  PubMed  Google Scholar 

  9. Bendrat K, Berger BJ, Cerami A (1995) Nature 378:138–139

    Article  CAS  PubMed  Google Scholar 

  10. Egan TJ, Chen JY, de Villiers KA, Mabotha TE, Naidoo KJ, Ncokazi KK, Langford SJ, McNaughton D, Pandiancherri S, Wood BR (2006) FEBS Lett 580:5105–5110

    Article  CAS  PubMed  Google Scholar 

  11. Egan TJ, Combrinck JM, Egan J, Hearne GR, Marques HM, Ntenteni S, Sewell BT, Smith PJ, Taylor D, van Schalkwyk DA, Walden JC (2002) Biochem J 365:343–347

    Article  CAS  PubMed  Google Scholar 

  12. Loria P, Miller S, Foley M, Tilley L (1999) Biochem J 339:363–370

    Article  CAS  PubMed  Google Scholar 

  13. Ginsburg H, Famin O, Zhang J, Krugliak M (1998) Biochem Pharmacol 56:1305–1313

    Article  CAS  PubMed  Google Scholar 

  14. Fu Y, Tilley L, Kenny S, Klonis N (2010) Cytometry A 77:253–263

    PubMed  Google Scholar 

  15. Fu Y, Klonis N, Suarna C, Maghzal GJ, Stocker R, Tilley L (2009) Cytometry A 75:390–404

    PubMed  Google Scholar 

  16. Hanscheid T, Egan TJ, Grobusch MP (2007) Lancet Infect Dis 7:675–685

    Article  CAS  PubMed  Google Scholar 

  17. Parapini S, Basilico N, Mondani M, Olliaro P, Taramelli D, Monti D (2004) FEBS Lett 575:91–94

    Article  CAS  PubMed  Google Scholar 

  18. Zhang S, Gerhard GS (2008) Bioorg Med Chem 16:7853–7861

    Article  CAS  PubMed  Google Scholar 

  19. Brown SB, Dean TC, Jones P (1970) Biochem J 117:733–739

    CAS  PubMed  Google Scholar 

  20. de Villiers KA, Kaschula CH, Egan TJ, Marques HM (2007) J Biol Inorg Chem 12:101–117

    Article  CAS  PubMed  Google Scholar 

  21. Asher C, de Villiers KA, Egan TJ (2009) Inorg Chem 48:7994–8003

    Article  CAS  PubMed  Google Scholar 

  22. Casabianca LB, An D, Natarajan JK, Alumasa JN, Roepe PD, Wolf C, de Dios AC (2008) Inorg Chem 47:6077–6081

    Article  CAS  PubMed  Google Scholar 

  23. Klonis N, Tan O, Jackson K, Goldberg D, Klemba M, Tilley L (2007) Biochem J 407:343–354

    Article  CAS  PubMed  Google Scholar 

  24. Spiller DG, Bray PG, Hughes RH, Ward SA, White MR (2002) Trends Parasitol 18:441–444

    Article  CAS  PubMed  Google Scholar 

  25. Ursos LM, DuBay KF, Roepe PD (2001) Mol Biochem Parasitol 112:11–17

    Article  CAS  PubMed  Google Scholar 

  26. Avdeef A, Comer JEA, Thomson SJ (1993) Anal Chem 65:42–49

    Article  CAS  Google Scholar 

  27. Asakura T, Lamson DW (1973) Anal Biochem 53:448–451

    Article  CAS  PubMed  Google Scholar 

  28. Moore DE, Hemmens VJ (1982) Photochem Photobiol 36:71–77

    Article  CAS  PubMed  Google Scholar 

  29. Bennett TN, Kosar AD, Ursos LM, Dzekunov S, Singh Sidhu AB, Fidock DA, Roepe PD (2004) Mol Biochem Parasitol 133:99–114

    Article  CAS  PubMed  Google Scholar 

  30. Krogstad DJ, Schlesinger PH, Gluzman IY (1985) J Cell Biol 101:2302–2309

    Article  CAS  PubMed  Google Scholar 

  31. Brown SB, Lantzke IR (1969) Biochem J 115:279–285

    CAS  PubMed  Google Scholar 

  32. Brown SB, Hatzikonstantinou H (1978) Biochim Biophys Acta 539:352–363

    CAS  PubMed  Google Scholar 

  33. Savitskii AP, Vorob’eva EV, Berezin IV, Ugarova NN (1981) J Colloid Interface Sci 84:175–181

    Article  CAS  Google Scholar 

  34. Natarajan JK, Alumasa JN, Yearick K, Ekoue-Kovi KA, Casabianca LB, de Dios AC, Wolf C, Roepe PD (2008) J Med Chem 51:3466–3479

    Article  CAS  PubMed  Google Scholar 

  35. Dorn A, Vippagunta SR, Matile H, Jaquet C, Vennerstrom JL, Ridley RG (1998) Biochem Pharmacol 55:727–736

    Article  CAS  PubMed  Google Scholar 

  36. Egan TJ, Hunter R, Kaschula CH, Marques HM, Misplon A, Walden J (2000) J Med Chem 43:283–291

    Article  CAS  PubMed  Google Scholar 

  37. Leed A, DuBay K, Ursos LM, Sears D, De Dios AC, Roepe PD (2002) Biochemistry 41:10245–10255

    Article  CAS  PubMed  Google Scholar 

  38. Vippagunta SR, Dorn A, Ridley RG, Vennerstrom JL (2000) Biochim Biophys Acta 1475:133–140

    CAS  PubMed  Google Scholar 

  39. Panijpan B, Mohan Rao C, Balasubramanian D (1983) Biosci Rep 3:1113–1117

    Article  CAS  PubMed  Google Scholar 

  40. Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer/Plenum, New York

    Google Scholar 

  41. White WI (1978) In: Dolphin D (ed) Porphyrins. Academic, New York, pp 303–339

    Google Scholar 

  42. Brown SB, Hatzikonstantinou H (1979) Biochim Biophys Acta 585:143–153

    CAS  PubMed  Google Scholar 

  43. Brown SB, Shillcock M, Jones P (1976) Biochem J 153:279–285

    CAS  PubMed  Google Scholar 

  44. Egan TJ, Mavuso WW, Ncokazi KK (2001) Biochemistry 40:204–213

    Article  CAS  PubMed  Google Scholar 

  45. Raynes K, Foley M, Tilley L, Deady LW (1996) Biochem Pharmacol 52:551–559

    Article  CAS  PubMed  Google Scholar 

  46. Slater AF, Cerami A (1992) Nature 355:167–169

    Article  CAS  PubMed  Google Scholar 

  47. Sullivan DJ (2002) Int J Parasitol 32:1645–1653

    Article  CAS  PubMed  Google Scholar 

  48. Dorn A, Stoffel R, Matile H, Bubendorf A, Ridley RG (1995) Nature 374:269–271

    Article  CAS  PubMed  Google Scholar 

  49. Vippagunta SR, Dorn A, Matile H, Bhattacharjee AK, Karle JM, Ellis WY, Ridley RG, Vennerstrom JL (1999) J Med Chem 42:4630–4639

    Article  CAS  PubMed  Google Scholar 

  50. Portela C, Afonso CM, Pinto MM, Ramos MJ (2004) Bioorg Med Chem 12:3313–3321

    Article  CAS  PubMed  Google Scholar 

  51. Constantinidis I, Satterlee JD (1988) J Am Chem Soc 110:4391–4395

    Article  CAS  Google Scholar 

  52. Frosch T, Schmitt M, Bringmann G, Kiefer W, Popp J (2007) J Phys Chem B 111:1815–1822

    Article  CAS  PubMed  Google Scholar 

  53. Nord K, Karlsen J, Tonnesen HH (1994) Photochem Photobiol 60:427–431

    Article  CAS  Google Scholar 

  54. Cheruku SR, Maiti S, Dorn A, Scorneaux B, Bhattacharjee AK, Ellis WY, Vennerstrom JL (2003) J Med Chem 46:3166–3169

    Article  CAS  PubMed  Google Scholar 

  55. Egan TJ (2001) Mini Rev Med Chem 1:113–123

    Article  CAS  PubMed  Google Scholar 

  56. Scheidt WR, Cohen IA, Kastner ME (1979) Biochemistry 18:3546–3552

    Article  CAS  PubMed  Google Scholar 

  57. Koenig DF (1965) Acta Crystallogr 18:663–673

    Article  CAS  PubMed  Google Scholar 

  58. de Villiers KA, Marques HM, Egan TJ (2008) J Inorg Biochem 102:1660–1667

    Article  PubMed  Google Scholar 

  59. Trapp S, Rosania GR, Horobin RW, Kornhuber J (2008) Eur Biophys J 37:1317–1328

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Australian Research Council and the National Health and Medical Research Council, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nectarios Klonis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 118 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crespo, M.P., Tilley, L. & Klonis, N. Solution behavior of hematin under acidic conditions and implications for its interactions with chloroquine. J Biol Inorg Chem 15, 1009–1022 (2010). https://doi.org/10.1007/s00775-010-0661-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-010-0661-y

Keywords

Navigation