Skip to main content
Log in

Determination of the catalytic activity of binuclear metallohydrolases using isothermal titration calorimetry

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Binuclear metallohydrolases are a large and diverse family of enzymes that are involved in numerous metabolic functions. An increasing number of members find applications as drug targets or in processes such as bioremediation. It is thus essential to have an assay available that allows the rapid and reliable determination of relevant catalytic parameters (k cat, K m, and k cat/K m). Continuous spectroscopic assays are frequently only possible by using synthetic (i.e., nonbiological) substrates that possess a suitable chromophoric marker (e.g., nitrophenol). Isothermal titration calorimetry, in contrast, affords a rapid assay independent of the chromophoric properties of the substrate—the heat associated with the hydrolytic reaction can be directly related to catalytic properties. Here, we demonstrate the efficiency of the method on several selected examples of this family of enzymes and show that, in general, the catalytic parameters obtained by isothermal titration calorimetry are in good agreement with those obtained from spectroscopic assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Wilcox DE (1996) Chem Rev 96:2435–2458

    Article  CAS  PubMed  Google Scholar 

  2. Mitić N, Smith SJ, Neves A, Guddat LW, Gahan LR, Schenk G (2006) Chem Rev 106:3338–3363

    Article  PubMed  Google Scholar 

  3. Schenk G, Mitić N, Gahan LR, Ollis DL, McGeary RP, Guddat LW (2012) Acc Chem Res 45:1593–1603

    Article  CAS  PubMed  Google Scholar 

  4. Raushel FM (2002) Curr Opinion Microbiol 5:288–295

    Article  CAS  Google Scholar 

  5. Ely F, Foo J-L, Jackson CJ, Gahan LR, Ollis DL, Schenk G (2007) Curr Top Biochem Res 9:63–78

    CAS  Google Scholar 

  6. Bigley AN, Raushel FM (2013) Biochim Biophys Acta 1834:443–453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Yang H, Carr PD, McLoughlin SY, Liu JW, Horne I, Qiu X, Jeffries CMJ, Russell RJ, Oakeshott JG, Ollis DL (2003) Protein Eng 16:135–145

    Article  CAS  PubMed  Google Scholar 

  8. Jackson CJ, Foo J-L, Tokuriki N, Afriat L, Carr PD, Kim H-K, Schenk G, Tawfik DS, Ollis DL (2009) Proc Natl Acad Sci USA 106:21631–21636

    Article  CAS  PubMed  Google Scholar 

  9. Ely F, Hadler KS, Gahan LR, Guddat LW, Ollis DL, Schenk G (2010) Biochem J 432:565–573

    Article  CAS  PubMed  Google Scholar 

  10. Ely F, Hadler KS, Mitić N, Gahan LR, Ollis DL, Plugis NM, Russo MT, Larrabee JA, Schenk G (2011) J Biol Inorg Chem 16:777–787

    Article  CAS  PubMed  Google Scholar 

  11. Ely F, Pedroso MM, Gahan LR, Ollis DL, Guddat LW, Schenk G (2012) J Inorg Biochem 106:19–22

    Article  CAS  PubMed  Google Scholar 

  12. Daumann LJ, McCarthy BY, Hadler KS, Murray TP, Gahan LR, Larrabee JA, Ollis DL, Schenk G (2013) Biochim Biophys Acta 1834:425–432

    Article  CAS  PubMed  Google Scholar 

  13. Gerlt JA, Whitman GJR (1975) J Biol Chem 250:5053–5058

    CAS  PubMed  Google Scholar 

  14. Hadler KS, Tanifum EA, Yip SH-C, Mitić N, Guddat LW, Jackson CJ, Gahan LR, Nguyen K, Carr PD, Ollis DL, Hengge AC, Larrabee JA, Schenk G (2008) J Am Chem Soc 130:14129–14138

    Article  CAS  PubMed  Google Scholar 

  15. Hadler KS, Mitić N, Ely F, Hanson GR, Gahan LR, Larrabee JA, Ollis DL, Schenk G (2009) J Am Chem Soc 131:11900–11908

    Article  CAS  PubMed  Google Scholar 

  16. Hadler KS, Mitić N, Yip SH-C, Gahan LR, Ollis DL, Schenk G, Larrabee JA (2010) Inorg Chem 49:2727–2734

    Article  CAS  PubMed  Google Scholar 

  17. Shenoy AR, Capuder M, Draskovic P, Lamba D, Visweswariah SS, Podobnik M (2007) J Mol Biol 365:211–225

    Article  CAS  PubMed  Google Scholar 

  18. Shenoy AR, Sreenath N, Podobnik M, Kovacevic M, Visweswariah SS (2005) Biochemistry 44:15695–15704

    Article  CAS  PubMed  Google Scholar 

  19. Keppetipola N, Shuman S (2008) J Biol Chem 283:30942–30949

    Article  CAS  PubMed  Google Scholar 

  20. Sutherland TD, Horne I, Weir KM, Coppin CW, Williams MR, Selleck M, Russell RJ, Oakeshott JG (2004) Clin Exp Pharmacol Physiol 31:817–821

    Article  CAS  PubMed  Google Scholar 

  21. Dawson RM, Pantelidis S, Rose HR, Kotsonis SE (2008) J Hazard Mater 157:308–314

    Article  CAS  PubMed  Google Scholar 

  22. Yip SHC, Foo J-L, Schenk G, Gahan LR, Carr PD, Ollis DL (2011) Protein Eng Des Sel 24:861–872

    Article  CAS  PubMed  Google Scholar 

  23. Shenoy AR, Srinivas A, Mahalingam M, Visweswariah SS (2005) Biochimie 87:557–563

    Article  CAS  PubMed  Google Scholar 

  24. Podobnik M, Tyagi R, Matange N, Dermol U, Gupta AK, Mattoo R, Seshadri K, Visweswariah SS (2009) J Biol Chem 284:32846–32857

    Article  CAS  PubMed  Google Scholar 

  25. Jackson C, Carr PD, Kim HK, Liu J-W, Herrald P, Mitic N, Schenk G, Smith CA, Ollis DL (2006) Biochem J 397:501–508

    Article  CAS  PubMed  Google Scholar 

  26. Mitić N, Noble CJ, Gahan LR, Hanson GR, Schenk G (2009) J Am Chem Soc 131:8173–8179

    Article  PubMed  Google Scholar 

  27. Mitić N, Hadler KS, Gahan LR, Hengge AC, Schenk G (2010) J Am Chem Soc 132:7049–7054

    Article  PubMed Central  PubMed  Google Scholar 

  28. Todd MJ, Gomez J (2001) Anal Biochem 296:179–187

    Article  CAS  PubMed  Google Scholar 

  29. Segel IH (1993) Enzyme kinetics: behavior and analysis of rapid equilibrium and steady-state enzyme systems. Wiley, New York

    Google Scholar 

  30. Aubert SD, Li Y, Raushel FM (2004) Biochemistry 43:5707–5715

    Article  CAS  PubMed  Google Scholar 

  31. Liu J-W, Hadler KS, Schenk G, Ollis D (2007) FEBS J 274:4742–4751

    Article  CAS  PubMed  Google Scholar 

  32. Gerlt JA, Westheimer FH (1973) J Am Chem Soc 95:8166–8168

    Article  CAS  PubMed  Google Scholar 

  33. Ghanem E, Li Y, Xu C, Raushel FM (2007) Biochemistry 46:9032–9040

    Article  CAS  PubMed  Google Scholar 

  34. Hadler KS, Huber T, Cassady AI, Weber J, Robinson J, Burrows A, Kelly G, Guddat LW, Hume DA, Schenk G, Flanagan JU (2008) BMC Res Notes 1:78

    Article  PubMed Central  PubMed  Google Scholar 

  35. Carter SG, Karl DW (1982) J Biochem Biophys Methods 7:7–13

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Australian Research Council, Discovery Projects Scheme (DP120104263). G.S. also acknowledges the receipt of an ARC Future Fellowship (FT120100694). M.P. is supported by an International Postgraduate Research Scholarship and University of Queensland International Living Allowance Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thierry Lonhienne or Gerhard Schenk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 172 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedroso, M.M., Ely, F., Lonhienne, T. et al. Determination of the catalytic activity of binuclear metallohydrolases using isothermal titration calorimetry. J Biol Inorg Chem 19, 389–398 (2014). https://doi.org/10.1007/s00775-013-1079-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-013-1079-0

Keywords

Navigation