Skip to main content
Log in

Bismuth(III) α-hydroxy carboxylates: highly selective toxicity of glycolates towards Leishmania major

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Eight bismuth(III) complexes derived from the simple α-hydroxycarboxylic acids; gluconic (H6-glu), tartaric (H4-tar), mandelic (H2-man), malic (H3-mal) and glycolic (H2-gly) have been synthesised and characterised. The complexes are formed through direct treatment of the organic acids with Bi(NO3)3·5H2O ([Bi(H2-tar)(H3-tar)] 2, [Bi(mal)(NO3)(H2O)2] 6, [Bi(gly)(NO3)(H2O)] 8) or Bi(OtBu)3 ([Bi(H-tar)(H2O)2] 1, [Bi(man)(H-man)(H2O)] 4, [Bi2(H-mal)3] 5, [Bi(gly)(H-gly)] 7), or through metathesis of the sodium salts with Bi(NO3)3·5H2O ([Bi(H3-glu)] 3). Reactions with both glucuronic and mucic acid proved to be unsuccessful. Small crystals of [Bi(gly)4(NO3)4(H2O)4]·5H2O 8 were obtained from aqueous solution and analysed by synchrotron X-ray diffraction. The data were relatively poor but composition and connectivity were established, confirming and supporting other analyses. Those complexes which displayed sufficient solubility; 2, 4, 7 and 8, were tested for their anti-Leishmanial activity against parasite promastigotes and amastigotes, and for toxicity against human fibroblast cells. All four complexes and their parent acids showed no toxicity towards either the promastigotes or fibroblast cells. However, the two glycolate complexes showed selective toxicity towards amastigotes with complex 8 providing for a low % viability of 1.8 ± 0.9 at 50.0 µM.

Graphical Abstract

Novel bismuth(III) complexes derived from α-hydroxycarboxylic acids have been synthesised, characterised and assessed for their anti-leishmanial activity. The glycolate complexes are selectively toxic against parasite amastigotes, with all complexes being non-toxic towards promastigotes and human fibroblast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Malik S, Kumar S, Choudhary A, Kumar A, Singh A, Garima A (2010) J Chem Pharm Res 2:70–91

    CAS  Google Scholar 

  2. Sheets D, Mubayi A, Kojouharov HV (2010) Int J Env Health Res 20:415–430

    Article  CAS  Google Scholar 

  3. Ready PD (2013) Ann Rev Entomol 58:227–250

    Article  CAS  Google Scholar 

  4. Peacock CS, Seeger K, Harris D, Murphy L, Ruiz JC, Quail MA, Peters N, Adlem E, Tivey A, Aslett M, Kerhornou A, Ivens A, Fraser A, Rajandream MA, Carver T, Norbertczak H, Chillingworth T, Hance Z, Jagels K, Moule S, Ormond D, Rutter S, Squares R, Whitehead S, Rabbinowitsch E, Arrowsmith C, White B, Thurston S, Bringaud F, Baldauf SL, Faulconbridge A, Jeffares D, Depledge DP, Oyola SO, Hilley JD, Brito LO, Tosi LR, Barrell B, Cruz AK, Mottram JK, Smith DF, Berriman M (2007) Nat Gen 39:839–847

    Article  CAS  Google Scholar 

  5. Ogden BO, Melby PC (2009) In: Moselio S (ed) Encyclopedia of microbiology, 3rd edn. Academic Press, Oxford, pp 663–673

  6. Bates PA (2007) Int J Paristol 37:1097–1106

    Article  CAS  Google Scholar 

  7. Singh S, Sivakumar RJ (2004) J Infect Chemother 10:307–315

    Article  PubMed  Google Scholar 

  8. Frézard F, Martins PS, Barbosa MCM, Pimenta AMC, Ferreira WA, de Melo JE, Mangrum JB, Demicheli C (2008) J Inorg Biochem 102:656–665

    Article  PubMed  Google Scholar 

  9. Hepburn NC, Nolan J, Fenn I, Herd RM, Neilson JMM, Sutherland GR, Fox KAA (1994) QJM 87:465–472

    CAS  PubMed  Google Scholar 

  10. Oliveira LF, Schubach AO, Martins MM, Passos SL, Oliveira RV, Marzochi MC, Andrade CA (2011) Acta Trop 118:87–96

    Article  CAS  PubMed  Google Scholar 

  11. Hepburn NC, Siddique I, Howie AF, Beckett GJ, Hayes PC (1994) Trans R Soc Trop Med Hyg 88:453–455

    Article  CAS  PubMed  Google Scholar 

  12. Rodrigues MLO, Costa RS, Souza CS, Foss NT, Roselino AMF (1999) Rev Instit Med Trop São Paulo 41:33–37

    Article  CAS  Google Scholar 

  13. del Rosal T, Artigao FB, Miguel MJG, de Lucas R, del Castillo F (2010) J Trop Ped 56:122–124

    Article  Google Scholar 

  14. Gasser RA Jr, Magill AJ, Oster CN, Franke ED, Grogl M, Berman JD (1994) Clin Infect Dis 18:83–90

    Article  PubMed  Google Scholar 

  15. Sundar S, More DK, Singh MK, Singh VP, Sharma S, Makharia A, Kumar PC, Murray HW (2000) Clin Infect Dis 31:1104–1107

    Article  CAS  PubMed  Google Scholar 

  16. Richard JV, Werbovetz KA (2010) Curr Op Chem Biol 14:447–455

    Article  CAS  Google Scholar 

  17. Shoeib T, Sharp BL (2012) Metallomics 4:1308–1320

    Article  CAS  PubMed  Google Scholar 

  18. Yang N, Sun H (2010) Biological chemistry of arsenic, antimony and bismuth. Wiley, New Jersey, pp 53–81. doi:10.1002/9780470975503

  19. Ge R, Sun H (2007) Acc Chem Res 40:267–274

    Article  CAS  PubMed  Google Scholar 

  20. Berman JD, Gallalee JV, Best JM (1987) Biochem Pharmacol 36:197–201

    Article  CAS  PubMed  Google Scholar 

  21. Demicheli C, Frézard F, Lecouvey M, Garnier-Suillerot A (2002) Biochim Biophys Acta 1570:192–198

    Article  CAS  PubMed  Google Scholar 

  22. Lucumi A, Robledo S, Gama V, Saravia NG (1998) Antimicrob Agents Chemother 42:1990–1995

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Brochu C, Wang J, Roy G, Messier N, Wang XY, Saravia NG, Ouellette M (2003) Antimicrob Agents Chemother 47:3073–3079

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Andrews PC, Frank R, Junk PC, Kedzierski L, Kumar I, MacLellan JG (2011) J Inorg Biochem 105:454–461

    Article  CAS  PubMed  Google Scholar 

  25. Andrews PC, Junk PC, Kedzierski L, Peiris RM (2013) Aust J Chem 66:1297–1305

    CAS  Google Scholar 

  26. Andrews PC, Blair VL, Ferrero RL, Junk PC, Kedzierski L, Peiris RM (2014) Dalton Trans 43:1279

    Article  CAS  PubMed  Google Scholar 

  27. McPhillips TM, McPhillips SE, Chiu HJ, Cohen AE, Deacon AM, Allis PJ, Garman E, Gonzales A, Sauter NK, Phizackerley RP, Soltis SM, Kuhn P (2002) J Synchrotron Radiat 9:401–406

    Article  CAS  PubMed  Google Scholar 

  28. Kabsch WJ (1993) J Appl Crystallogr 26:795–800

    Article  CAS  Google Scholar 

  29. CrysAlisPro v1.171.34.36, Oxford Diffraction Ltd (Agilent Technologies) Oxfordshire, 2010

  30. Mikus J, Steverding D (2000) Parasitol Int 48:265–269

    Article  CAS  PubMed  Google Scholar 

  31. Kedzierski L, Curtis JM, Kaminska M, Jodynis-Liebert J, Murias M (2007) Parasitol Res 102:91–97

    Article  PubMed  Google Scholar 

  32. Kedzierski L, Montgomery J, Bullen D, Curtis J, Gardiner E, Jimenez-Ruiz A (2004) Handman. J Immunol 172:4902–4906

    Article  CAS  PubMed  Google Scholar 

  33. Herrmann WA, Herdtweck E, Scherer W, Kiprof P, Pajdla L (1993) Chem Ber 126:51–56

    Article  CAS  Google Scholar 

  34. Herrmann WA, Herdtweck E, Pajdla L (1991) Inorg Chem 30:2579–2581

    Article  CAS  Google Scholar 

  35. Asato E, Driessen WL, de Graaff RAG, Hulsbergen FB, Reedijk J (1991) Inorg Chem 30:4210–4218

    Article  CAS  Google Scholar 

  36. Asato E, Katsura K, Mikuriya M, Fujii T, Reedijk J (1992) Chem Lett 10:1967–1970

    Article  Google Scholar 

  37. Asato E, Katsura K, Mikuriya M, Fujii T, Reedijk J (1993) Inorg Chem 32:5322–5329

    Article  CAS  Google Scholar 

  38. Asato E, Katsura K, Mikuriya M, Turpeinen U, Mutikainen I, Reedijk J (1995) Inorg Chem 34:2447–2454

    Article  CAS  Google Scholar 

  39. Barrie PJ, Djuran MI, Mazid MA, McPartlin M, Sadler PJ, Scowen IJ, Sun H (1996) J Chem Soc Dalton Trans 12:2417–2422

    Article  Google Scholar 

  40. Antsyshkina AS, Sadikov GG, Kuvshinova TB, Skorikov VM, Sergienko VS (2006) Russ J Inorg Chem 51:374–385

    Article  Google Scholar 

  41. Yang N, An Y, Cai J-W, Hu L-H, Zeng Y-B, Mao Z-W, Chen G-H, Sun H (2010) Sci China Chem 53:2152–2158

    Article  CAS  Google Scholar 

  42. Sagatys DS, O’Reilly EJ, Patel S, Bott RC, Lynch DE, Smith G, Kennard CHL (1992) Aust J Chem 45:1027–1034

    Article  CAS  Google Scholar 

  43. Kiprof P, Scherer W, Pajdla L, Herdtweck E, Herrmann WA (1992) Chem Ber 125:43–46

    Article  CAS  Google Scholar 

  44. Luqman A, Blair VL, Brammananth R, Crellin PK, Coppel RL, Kedzierski L, Andrews PC (2015) Eur J Inorg Chem 2015:725–733

  45. Gourbal B, Sonuc N, Bhattacharjee H, Legare D, Sundar S, Ouellette M, Rosen BP, Mukhopadhyay R (2004) J Biol Chem 279:31010–31017

    Article  CAS  PubMed  Google Scholar 

  46. Brochu C, Wang J, Roy G, Messier N, Wang X-Y, Saravia NG, Ouellette M (2003) Antimicrob Agents Chemother 47:3073–3079

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Novozhilova NM, Bovin NV (2010) Biochemistry 75:686–694

    CAS  PubMed  Google Scholar 

  48. Secundino N, Kimblin N, Peters NC, Lawyer P, Capul AA, Beverley SM, Turco SJ, Sacks D (2010) Cell Microbiol 12:906–918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Piani A, Ilg T, Elefanty AG, Curtis J, Handman E (1999) Microb Infect 1:589–599

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip C. Andrews.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 132 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loh, A., Ong, Y.C., Blair, V.L. et al. Bismuth(III) α-hydroxy carboxylates: highly selective toxicity of glycolates towards Leishmania major . J Biol Inorg Chem 20, 1193–1203 (2015). https://doi.org/10.1007/s00775-015-1299-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1299-6

Keywords

Navigation