Skip to main content

Advertisement

Log in

Glycation of Lys-16 and Arg-5 in amyloid-β and the presence of Cu2+ play a major role in the oxidative stress mechanism of Alzheimer’s disease

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Extensive research has linked the amyloid-beta (Aβ) peptide to neurological dysfunction in Alzheimer’s disease (AD). Insoluble Aβ plaques in the AD patient brain contain high concentrations of advanced glycation end-products (AGEs) as well as transition metal ions. This research elucidated the roles of Aβ, sugars, and Cu2+ in the oxidative stress mechanism of AD at the molecular level. Mass spectral (MS) analysis of the reactions of Aβ with two representative sugars, ribose-5-phosphate (R5P) and methylglyoxal (MG), revealed Lys-16 and Arg-5 as the primary glycation sites. Quantitative analysis of superoxide \(\left({\text{O}}_2^{\bullet-}\right)\) production by a cyt c assay showed that Lys-16 generated four times as much \({\text{O}}_2^{\bullet-}\) as Arg-5. Lys-16 and Arg-5 in Aβ1–40 are both adjacent to histidine residues, which are suggested to catalyze glycation. Additionally, Lys-16 is close to the central hydrophobic core (Leu-17–Ala-21) and to His-13, both of which are known to lower the pKa of the residue, leading to increased deprotonation of the amine and an enhanced glycation reactivity compared to Arg-5. Gel electrophoresis results indicated that all three components of AD plaques—Aβ1–40, sugars, and Cu2+—are necessary for DNA damage. It is concluded that the glycation of Aβ1–40 with sugars generates significant amounts of \({\text{O}}_2^{\bullet-}\), owing to the rapid glycation of Lys-16 and Arg-5. In the presence of Cu2+, \({\text{O}}_2^{\bullet-}\) converts to hydroxyl radical (HO·), the source of oxidative stress in AD.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Source: Protein workshop 1Z0Q by Protein Data Bank [47]

Scheme 1

Similar content being viewed by others

References

  1. Rauk A (2009) The chemistry of Alzheimer’s disease. Chem Soc Rev 38:2698–2715. doi:10.1039/b807980n

    Article  CAS  PubMed  Google Scholar 

  2. (2013) Latest Alzheimer’s Facts and Figures. In: Latest Facts Fig. Rep. Alzheimers Assoc. http://www.alz.org/facts/overview.asp. Accessed 19 Nov 2016

  3. Telpoukhovskaia MA, Orvig C (2013) Werner coordination chemistry and neurodegeneration. Chem Soc Rev 42:1836–1846. doi:10.1039/c2cs35236b

    Article  CAS  PubMed  Google Scholar 

  4. Li X-H, Du L-L, Cheng X-S et al (2013) Glycation exacerbates the neuronal toxicity of β-amyloid. Cell Death Dis 4:e673. doi:10.1038/cddis.2013.180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Angeloni C, Zambonin L, Hrelia S (2014) Role of methylglyoxal in alzheimer’s disease. Biomed Res Int. doi:10.1155/2014/238485

    Google Scholar 

  6. Brion JP (1998) Neurofibrillary tangles and Alzheimer’s disease. Eur Neurol 40:130–140

    Article  CAS  PubMed  Google Scholar 

  7. Jiang D, Li X, Williams R et al (2009) Ternary complexes of iron, amyloid-beta, and nitrilotriacetic acid: binding affinities, redox properties, and relevance to iron-induced oxidative stress in Alzheimer’s disease. Biochemistry (Mosc) 48:7939–7947. doi:10.1021/bi900907a

    Article  CAS  Google Scholar 

  8. Faller P, Hureau C, Berthoumieu O (2013) Role of metal ions in the self-assembly of the Alzheimer’s amyloid-β Peptide. Inorg Chem 52:12193–12206. doi:10.1021/ic4003059

    Article  CAS  PubMed  Google Scholar 

  9. Zatta P, Lucchini R, Van R, Taylor A (2003) The role of metals in neurodegenerative processes: aluminum, manganese, and zinc. Brain Res Bull 62:15–28. doi:10.1016/S0361-9230(03)00182-5

    Article  CAS  PubMed  Google Scholar 

  10. Varadarajan S, Kanski J, Aksenova M et al (2001) Different mechanisms of oxidative stress and neurotoxicity for Alzheimer’s A beta(1–42) and A beta(25–35). J Am Chem Soc 123:5625–5631

    Article  CAS  PubMed  Google Scholar 

  11. Kepp KP (2012) Bioinorganic chemistry of Alzheimer’s disease. Chem Rev 112:5193–5239. doi:10.1021/cr300009x

    Article  CAS  PubMed  Google Scholar 

  12. Butterfield DA, Lauderback CM (2002) Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid β-peptide-associated free radical oxidative stress. Free Radic Biol Med 32:1050–1060. doi:10.1016/S0891-5849(02)00794-3

    Article  CAS  PubMed  Google Scholar 

  13. Halliwell B (2007) Biochemistry of oxidative stress. Biochem Soc Trans 35:1147–1150. doi:10.1042/BST0351147

    Article  CAS  PubMed  Google Scholar 

  14. Wang J, Xiong S, Xie C et al (2005) Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer’s disease. J Neurochem 93:953–962. doi:10.1111/j.1471-4159.2005.03053.x

    Article  CAS  PubMed  Google Scholar 

  15. Hamley IW (2012) The amyloid beta peptide: a chemist’s perspective. Role in Alzheimer’s and fibrillization. Chem Rev 112:5147–5192. doi:10.1021/cr3000994

    Article  CAS  PubMed  Google Scholar 

  16. Karran E, De S (2016) The amyloid cascade hypothesis: are we poised for success or failure? J Neurochem 139:237–252. doi:10.1111/jnc.13632

    Article  CAS  PubMed  Google Scholar 

  17. Suberbielle E, Sanchez PE, Kravitz AV et al (2013) Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. Nat Neurosci 16:613–621. doi:10.1038/nn.3356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang J, Butterfield DA (2017) Oxidative stress and neurodegeneration. Brain Res Bull 133:1–3. doi:10.1016/j.brainresbull.2017.04.018

    Article  PubMed  Google Scholar 

  19. Mayes J, Tinker-Mill C, Kolosov O et al (2014) β-Amyloid fibrils in alzheimer disease are not inert when bound to copper ions but can degrade hydrogen peroxide and generate reactive oxygen species. J Biol Chem 289:12052–12062. doi:10.1074/jbc.M113.525212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang X, Atwood CS, Hartshorn MA et al (1999) The Aβ peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry (Mosc) 38:7609–7616. doi:10.1021/bi990438f

    Article  CAS  Google Scholar 

  21. Shearer J, Szalai VA (2008) The amyloid-β peptide of Alzheimer’s disease binds CuI in a linear bis-his coordination environment: insight into a possible neuroprotective mechanism for the amyloid-β peptide. J Am Chem Soc 130:17826–17835. doi:10.1021/ja805940m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Eskici G, Axelsen PH (2012) Copper and oxidative stress in the pathogenesis of Alzheimer’s disease. Biochemistry (Mosc) 51:6289–6311. doi:10.1021/bi3006169

    Article  CAS  Google Scholar 

  23. Cheignon C, Jones M, Atrián-Blasco E et al (2017) Identification of key structural features of the elusive Cu–Aβ complex that generates ROS in Alzheimer’s disease. Chem Sci 8:5107–5118. doi:10.1039/C7SC00809K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mirats A, Alí-Torres J, Rodríguez-Santiago L et al (2015) Dioxygen activation in the Cu–amyloid β complex. Phys Chem Chem Phys 17:27270–27274. doi:10.1039/C5CP04025F

    Article  CAS  PubMed  Google Scholar 

  25. Prosdocimi T, Gioia LD, Zampella G, Bertini L (2016) On the generation of OH· radical species from H2O2 by Cu(I) amyloid beta peptide model complexes: a DFT investigation. JBIC J Biol Inorg Chem 21:197–212. doi:10.1007/s00775-015-1322-y

    Article  CAS  PubMed  Google Scholar 

  26. Cho S-J, Roman G, Yeboah F, Konishi Y (2007) The road to advanced glycation end products: a mechanistic perspective. Curr Med Chem 14:1653–1671

    Article  CAS  PubMed  Google Scholar 

  27. Münch G, Thome J, Foley P et al (1997) Advanced glycation endproducts in ageing and Alzheimer’s disease. Brain Res Rev 23:134–143

    Article  PubMed  Google Scholar 

  28. Janson J, Laedtke T, Parisi JE et al (2004) Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 53:474–481

    Article  CAS  PubMed  Google Scholar 

  29. Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418. doi:10.1146/annurev.micro.57.030502.090938

    Article  CAS  PubMed  Google Scholar 

  30. Genaro-Mattos TC, Dalvi LT, Oliveira RG et al (2009) Reevaluation of the 2-deoxyribose assay for determination of free radical formation. Biochim Biophys Acta BBA Gen Subj 1790:1636–1642. doi:10.1016/j.bbagen.2009.09.003

    Article  CAS  Google Scholar 

  31. Li KS, Rempel DL, Gross ML (2016) Conformational-sensitive fast photochemical oxidation of proteins and mass spectrometry characterize amyloid beta 1–42 aggregation. J Am Chem Soc 138:12090–12098. doi:10.1021/jacs.6b07543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Crescenzi O, Tomaselli S, Guerrini R et al (2002) Solution structure of the Alzheimer amyloid β-peptide (1–42) in an apolar microenvironment. Eur J Biochem 269:5642–5648. doi:10.1046/j.1432-1033.2002.03271.x

    Article  CAS  PubMed  Google Scholar 

  33. Yim HS, Kang SO, Hah YC et al (1995) Free radicals generated during the glycation reaction of amino acids by methylglyoxal. A model study of protein-cross-linked free radicals. J Biol Chem 270:28228–28233

    Article  CAS  PubMed  Google Scholar 

  34. Lederer MO, Klaiber RG (1999) Cross-linking of proteins by Maillard processes: characterization and detection of lysine-arginine cross-links derived from glyoxal and methylglyoxal. Bioorg Med Chem 7:2499–2507

    Article  CAS  PubMed  Google Scholar 

  35. Wysocki VH, Resing KA, Zhang Q, Cheng G (2005) Mass spectrometry of peptides and proteins. Methods 35:211–222. doi:10.1016/j.ymeth.2004.08.013

    Article  CAS  PubMed  Google Scholar 

  36. Chumsae C, Gifford K, Lian W et al (2013) Arginine modifications by methylglyoxal: discovery in a recombinant monoclonal antibody and contribution to acidic species. Anal Chem 85:11401–11409. doi:10.1021/ac402384y

    Article  CAS  PubMed  Google Scholar 

  37. Ahmed MU, Brinkmann Frye E, Degenhardt TP et al (1997) N-epsilon-(carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochem J 324:565–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gersten RA, Gretebeck LM, Hildick-Smith G, Sandwick RK (2010) Maillard reaction of ribose 5-phosphate generates superoxide and glycation products for bovine heart cytochrome c reduction. Carbohydr Res 345:2499–2506. doi:10.1016/j.carres.2010.09.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Margoliash E, Frohwirt N (1959) Spectrum of horse-heart cytochrome c. Biochem J 71:570–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Choi S, Cooley RB, Voutchkova A et al (2005) Oxidation of guanosine derivatives by a platinum(IV) complex: internal electron transfer through cyclization. J Am Chem Soc 127:1773–1781. doi:10.1021/ja045194n

    Article  CAS  PubMed  Google Scholar 

  41. Lo TW, Westwood ME, McLellan AC et al (1994) Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with Nalpha-acetylarginine, Nalpha-acetylcysteine, and Nalpha-acetyllysine, and bovine serum albumin. J Biol Chem 269:32299–32305

    CAS  PubMed  Google Scholar 

  42. Fitch CA, Platzer G, Okon M et al (2015) Arginine: its pKa value revisited. Protein Sci 24:752–761. doi:10.1002/pro.2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Isom DG, Castañed CA, Cannon BR, García-Moreno BE (2011) Large shifts in pKa values of lysine residues buried inside a protein. Proc Natl Acad Sci USA 108:5260–5265. doi:10.1073/pnas.1010750108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Triguero L, Singh R, Prabhakar R (2008) Comparative molecular dynamics studies of wild-type and oxidized forms of full-length alzheimer amyloid β-peptides Aβ(1-40) and Aβ(1-42). J Phys Chem B 112:7123–7131. doi:10.1021/jp801168v

    Article  CAS  PubMed  Google Scholar 

  45. Zhao LN, Mu Y, Chew LY (2013) Heme prevents amyloid beta peptide aggregation through hydrophobic interaction based on molecular dynamics simulation. Phys Chem Chem Phys 15:14098–14106. doi:10.1039/c3cp52354c

    Article  CAS  PubMed  Google Scholar 

  46. Walton DJ, Shilton BH (1991) Site specificity of protein glycation. Amino Acids 1:199–203. doi:10.1007/BF00806917

    Article  CAS  PubMed  Google Scholar 

  47. Tomaselli S, Esposito V, Vangone P et al (2006) The alpha-to-beta conformational transition of Alzheimer’s Abeta-(1–42) peptide in aqueous media is reversible: a step by step conformational analysis suggests the location of beta conformation seeding. ChemBioChem 7:257–267. doi:10.2210/pdb1z0q/pdb

    Article  CAS  PubMed  Google Scholar 

  48. Derrick JS, Lee J, Lee SJC et al (2017) Mechanistic insights into tunable metal-mediated hydrolysis of amyloid-β peptides. J Am Chem Soc 139:2234–2244. doi:10.1021/jacs.6b09681

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Middlebury College, and the Arnold and Marble Beckman Foundation for their financial support for this work. We also acknowledge Ms. Jody Smith and Dr. Royston Quintyn for their help with mass spectrometry and MS data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunhee Choi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 605 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fica-Contreras, S.M., Shuster, S.O., Durfee, N.D. et al. Glycation of Lys-16 and Arg-5 in amyloid-β and the presence of Cu2+ play a major role in the oxidative stress mechanism of Alzheimer’s disease. J Biol Inorg Chem 22, 1211–1222 (2017). https://doi.org/10.1007/s00775-017-1497-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-017-1497-5

Keywords

Navigation