Skip to main content
Log in

A motion-aware approach for efficient evaluation of continuous queries on 3D object databases

  • Regular Paper
  • Published:
The VLDB Journal Aims and scope Submit manuscript

Abstract

With recent advances in mobile computing technologies, mobile devices can render 3D objects realistically. Users of these devices such as tourists, mixed-reality gamers, and rescue officers, often need real-time retrieval of 3D objects over wireless networks. Due to bandwidth and latency restrictions in mobile settings, efficient continuous retrieval of 3D objects is a major challenge. In this paper, we present a motion-aware approach to this problem in a client-server model. Specifically, we propose: (i) representing 3D objects in multiple resolutions through wavelets to facilitate motion-aware incremental retrieval, (ii) motion-aware buffer management schemes for both client and server, (iii) an efficient index structure for 3D objects represented by wavelets, and (iv) techniques for processing group queries exploiting group motion behavior of clients. The results of our extensive experimental study demonstrate the effectiveness of our solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LifeClipper: http://www.torpus.com/lifeclipper/ (2005)

  2. Ofcom: http://www.ofcom.org.uk/static/archive/Oftel/publications/research/2002/benchint1202_56.htm (2002)

  3. Ali, M.E., Zhang, R., Tanin, E., Kulik, L.: A motion-aware approach to continuous retrieval of 3D objects. In: ICDE, pp. 843–852 (2008)

  4. Gurtov A., Floyd S.: Modeling wireless links for transport protocols. SIGCOMM Comput. Commun. Rev. 34(2), 85–96 (2004)

    Article  Google Scholar 

  5. Walke B.H.: Mobile Radio Networks: Networking and Protocols. Wiley, Chichester (2001)

    Google Scholar 

  6. Qualcomm: http://www.qualcomm.com/common/documents/white_papers/HSPAPlus_MobileBroadband_021309.pdf (2009)

  7. Rohde: http://www2.rohde-schwarz.com/en/technologies/cellular_standards/3GPP_HSPA/information/ (2009)

  8. Chou C.T., Misra A., Qadir J.: Low-latency broadcast in multirate wireless mesh networks. IEEE J. Sel. Areas Commun. 24(11), 2081–2091 (2006)

    Article  Google Scholar 

  9. Schlosser, S.W., Schindler, J., Papadomanolakis, S., Shao, M., Ailamaki, A., Faloutsos, C., Ganger, G.R.: On multidimensional data and modern disks. In: FAST, pp. 17–17 (2005)

  10. Yu, H., Ma, K.L., Welling, J.: A parallel visualization pipeline for terascale earthquake simulations. In: ACM/IEEE Supercomputing, p. 49 (2004)

  11. Freitas, R.F.: Storage class memory: technology, systems and applications. In: SIGMOD, pp. 985–986 (2009)

  12. Hu H., Lee D.L.: Range nearest-neighbor query. IEEE TKDE 18(1), 78–91 (2006)

    MathSciNet  Google Scholar 

  13. Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor search. In: VLDB, pp. 287–298 (2002)

  14. Zhang, J., Zhu, M., Papadias, D., Tao, Y., Lee, D.L.: Location-based spatial queries. In: SIGMOD, pp. 443–454 (2003)

  15. Gedik, B., Wu, K.L., Yu, P., Liu, L.: Motion adaptive indexing for moving continual queries over moving objects. In: CIKM, pp. 427–436 (2004)

  16. Lazaridis, I., Porkaew, K., Mehrotra, S.: Dynamic queries over mobile objects. In: EDBT, pp. 269–286 (2002)

  17. Mokbel, M.F., Xiong, X., Aref, W.G.: SINA: Scalable incremental processing of continuous queries in spatio-temporal databases. In: SIGMOD, pp. 623–634 (2004)

  18. Nutanong S., Zhang R., Tanin E., Kulik L.: The V*-diagram: a query-dependent approach to moving knn queries. VLDB 1(1), 1095–1106 (2008)

    Google Scholar 

  19. Tao, Y., Papadias, D.: Time-parameterized queries in spatio-temporal databases. In: In SIGMOD, pp. 334–345 (2002)

  20. Prabhakar S., Xia Y., Kalashnikov D.V., Aref W.G., Hambrusch S.E.: Query indexing and velocity constrained indexing: Scalable techniques for continuous queries on moving objects. IEEE Trans. Comput. 51(10), 1124–1140 (2002)

    Article  MathSciNet  Google Scholar 

  21. Cho, G.: Using predictive prefetching to improve location awareness of mobile information service. In: ICCS, pp. 1128–1136 (2002)

  22. de Nitto Person, V., Grassi, V., Morlupi, A.: Modeling and evaluation of pre-fetching policies for context-aware information services. In: MobiCom, pp. 55–65 (1998)

  23. Welch, G., Bishop, G.: An introduction to the Kalman filter. SIGGRAPH 2001 Course (2001)

  24. Luebke D.P.: Level of Detail for 3D Graphics: Application and Theory. Morgan Kaufmann, CA (2003)

    Google Scholar 

  25. Hoppe, H.: Progressive meshes. In: SIGGRAPH, pp. 30–99 (1996)

  26. Stollnitz E.J., DeRose T.D., Salesin D.H.: Wavelets for Computer Graphics: Theory and Applications. Morgan Kaufmann, CA (1996)

    Google Scholar 

  27. Moran F., Garcia N.: Comparison of wavelet-based three-dimensional model coding techniques. IEEE Trans. Circuits Syst. Video Technol. 14(7), 937–949 (2004)

    Article  Google Scholar 

  28. Patrick G., Olivier A., Christian B.: Real-time reconstruction of wavelet-encoded meshes for view-dependent transmission and visualization. IEEE Trans. Circuits Syst. Video Technol. 14(7), 1009–1020 (2004)

    Article  Google Scholar 

  29. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: SIGMOD, pp. 47–57 (1984)

  30. Beckmann, N., Kriegel, H., Schneider, R., Seeger, B.: The R*-Tree: an efficient and robust access method for points and rectangles. In: SIGMOD, pp. 322–331 (1990)

  31. Bentley J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  32. Samet H.: The Design and Analysis of Spatial Data Structures. Addison-Wesley, MA (1990)

    Google Scholar 

  33. Kofler M., Gervautz M., Gruber M.: R-trees for organizing and visualizing 3D GIS database. J. Vis. Comput. Animat. 11(3), 129–143 (2000)

    Article  Google Scholar 

  34. Hoppe, H.: Smooth view-dependent level-of-detail control and its application to terrain rendering. In: IEEE Visualization, pp. 35–42 (1998)

  35. Shou, L., Huang, Z., Tan, K.L.: HDoV-tree: The structure, the storage, the speed. In: ICDE, pp. 557–568 (2003)

  36. Xu, K., Zhou, X., Lin, X.: Database support for multiresolution terrain visualization. In: ADC, pp. 153–160 (2003)

  37. Xu, K., Zhou, X., Lin, X.: Direct mesh: a multiresolution approach to terrain visualization. In: ICDE, pp. 766–772 (2004)

  38. Havran, V., Bittner, J., Sára, J.: Ray tracing with rope trees. In: Spring Conference on Computer Graphics, pp. 130–140 (1998)

  39. Ousterhout J.K.: Corner Stitching: A Data Structuring Technique for VLSI Layout Tools. Technical Report. EECS Department, University of California, Berkeley (1982)

    Google Scholar 

  40. Yi B.K., Sidiropoulos N., Johnson T., Jagadish H.V., Faloutsos C., Biliris A.: Online Data Mining for Co-evolving Time Sequences. Technical Report. CS Department, Carnegie Mellon University, Pittsburgh (1999)

    Google Scholar 

  41. Tao, Y., Faloutsos, C., Papadias, D., Liu, B.: Prediction and indexing of moving objects with unknown motion patterns. In: SIGMOD, pp. 611–622 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egemen Tanin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, M.E., Tanin, E., Zhang, R. et al. A motion-aware approach for efficient evaluation of continuous queries on 3D object databases. The VLDB Journal 19, 603–632 (2010). https://doi.org/10.1007/s00778-010-0182-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00778-010-0182-x

Keywords

Navigation