Skip to main content

Advertisement

Log in

Early outcome of an implant system with a resorbable adhesive calcium–phosphate coating—a prospective clinical study in partially dentate patients

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

This study aims to investigate the early outcome of a dental implant with bioactive calcium–phosphate (CaP) coating in the first year of usage in different clinical indications in partially edentulous patients, after early and delayed prosthetic loading. Therefore, in a prospective follow-up study, the cumulative survival and success rate of a conical, self-drilling and self-tapping implant system after 6 months and 1 year post-insertion was evaluated. A total of 311 CaP-coated implants were placed in 124 patients. Seventy-two implants in clinical high-quality bone situation were loaded after 2 weeks post-insertion with the definite restoration; the rest after 6 months. The indication for implant placement was treatment of partial dentate mandible and maxilla. One hundred sixty-three implants were placed in the posterior mandible, 117 in the posterior maxilla. In the frontal maxilla, 25 implants and in the frontal mandible, eight implants were used. In 126 cases (36%), bone augmentation procedures (guided bone regeneration and sinus lift) were performed concomitant with implant placement. The difference between primary and secondary stability (implant stability quotient (ISQ), Periotest, insertion torque), peri-implant clinical parameter as well as survival and success criteria were evaluated. In total, ISQ mean values after 6 months were higher than after implant placement. Periotest values increased in the period of the first 6 months and remained constant afterwards. After 6 months of insertion, the mean bone loss was 0.051 mm. After 12 months, a bone gain with a mean of +0.016 mm was observed; implants in the posterior maxilla showed significant less bone resorption than implants in the posterior mandible (p < 0.0001). In the most of the implants (74%), clinical normal gingival tissue could be observed. In 24%, a mild inflammation was analysed. In 35 implants, a provocation of peri-implant bleeding was possible. In the early loading group, no implant failure was seen. Altogether, one implant in D4 bone has been lost. The cumulative survival rate summed up to 99.7%. In general, implant success assessment analysis according to Albrektsson and Buser displayed success in 99.7% of the implants. With respect to the patient selection including 124 implants with minor and major augmentations as well as early loading prosthetic function, the 1-year clinical use of the studied implant system with CaP coating showed good results, comparable to that of conventional implants without a specific coating. After 1 year, neither special disadvantages nor benefits of CaP-coated implants could be evaluated. Long-term results are further needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Branemark PI, Hansson BO, Adell R, Breine U, Lindstrom J, Hallen O, Ohman A (1977) Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl 16:1–132

    PubMed  Google Scholar 

  2. Esposito M, Murray-Curtis L, Grusovin MG, Coulthard P, Worthington HV (2007) Interventions for replacing missing teeth: different types of dental implants. Cochrane Database Syst Rev 4:CD003815. doi:10.1002/14651858

    PubMed  Google Scholar 

  3. Toyoshima T, Wagner W, Klein MO, Stender E, Wieland M, Al-Nawas B (2009) Primary stability of a hybrid self-tapping implant compared to a cylindrical non-self-tapping implant with respect to drilling protocols in an ex vivo model. Clin Implant Dent Relat Res. doi:10.1111/j.1708-8208.2009.00185.x

  4. Glauser R, Sennerby L, Meredith N, Ree A, Lundgren A, Gottlow J, Hammerle CH (2004) Resonance frequency analysis of implants subjected to immediate or early functional occlusal loading. Successful vs. failing implants. Clin Oral Implants Res 15:428–434. doi:10.1111/j.1600-0501.2004.01036.x

    Article  PubMed  Google Scholar 

  5. Rodrigo D, Aracil L, Martin C, Sanz M (2009) Diagnosis of implant stability and its impact on implant survival: a prospective case series study. Clin Oral Implants Res. doi:10.1111/j.1600-0501.2009.01820.x

  6. Al-Nawas B, Groetz KA, Goetz H, Duschner H, Wagner W (2008) Comparative histomorphometry and resonance frequency analysis of implants with moderately rough surfaces in a loaded animal model. Clin Oral Implants Res 19:1–8. doi:10.1111/j.1600-0501.2007.01396.x

    PubMed  Google Scholar 

  7. Le Guehennec L, Goyenvalle E, Lopez-Heredia MA, Weiss P, Amouriq Y, Layrolle P (2008) Histomorphometric analysis of the osseointegration of four different implant surfaces in the femoral epiphyses of rabbits. Clin Oral Implants Res 19:1103–1110. doi:10.1111/j.1600-0501.2008.01547.x

    Article  PubMed  Google Scholar 

  8. Junker R, Dimakis A, Thoneick M, Jansen JA (2009) Effects of implant surface coatings and composition on bone integration: a systematic review. Clin Oral Implants Res 20(Suppl 4):185–206. doi:10.1111/j.1600-0501.2009.01777.x

    Article  PubMed  Google Scholar 

  9. Cochran DL, Schenk RK, Lussi A, Higginbottom FL, Buser D (1998) Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: a histometric study in the canine mandible. J Biomed Mater Res 40:1–11. doi:10.1002/(SICI)1097-4636(199804)40

    Article  PubMed  Google Scholar 

  10. Albrektsson T, Wennerber A (2004) Oral implant surfaces: part 2—review focusing on clinical knowledge of different surfaces. Int J Prosthodont 17:544–564

    PubMed  Google Scholar 

  11. Kurze P, Krysmann W, Knöfler W (1986) Anodische oxidation unter funkenentladung (anof)—ein neues beschichtungsverfahren für die medizintechnik. Zschr klin Med 41:219–222

    Google Scholar 

  12. Graf HL, Knöfler W (1993) Bone reaction on biomaterials. VIII. Principles of bony regeneration under influence of foreign bodies. Z Zahnärztl Implantol 9:62

    Google Scholar 

  13. Kim KH, Ramaswamy N (2009) Electrochemical surface modification of titanium in dentistry. Dent Mater J 28:20–36

    Article  PubMed  Google Scholar 

  14. Yang GL, He FM, Song E, Hu JA, Wang XX, Zhao SF (2010) In vivo comparison of bone formation on titanium implant surfaces coated with biomimetically deposited calcium phosphate or electrochemically deposited hydroxyapatite. Int J Oral Maxillofac Implants 25:669–680

    PubMed  Google Scholar 

  15. Becker J, Fensch FE (1995) Morphology of titanium implants after anionic oxidation under spark discharge. Z Zahnäztl Implantol 11:92–97

    Google Scholar 

  16. Graf H-L, Geu B, Knöfler W, Hemprich A (2002) Prospektive klinische Studie zur Beschreibung des klinischen Verhaltens des ZL-Duraplant-Implantatsystems mit Ticer-Oberfläche. Ii. Mitteilung: Zustandsbeschreibende parameter. Z Zahnärztl Impl 18:169–176

    Google Scholar 

  17. Suh JY, Jeung OC, Choi BJ, Park JW (2007) Effects of a novel calcium titanate coating on the osseointegration of blasted endosseous implants in rabbit tibiae. Clin Oral Implants Res 18:362–369. doi:10.1111/j.1600-0501.2006.01323.x

    Article  PubMed  Google Scholar 

  18. Reigstad O, Franke-Stenport V, Johansson CB, Wennerberg A, Rokkum M, Reigstad A (2007) Improved bone ingrowth and fixation with a thin calcium phosphate coating intended for complete resorption. J Biomed Mater Res B Appl Biomater 83:9–15. doi:10.1002/jbm.b.30762

    PubMed  Google Scholar 

  19. Misch CE (1990) Density of bone: effect on treatment plans, surgical approach, healing and proressive bone loading. Int J Oral Implantol 6:23–31

    PubMed  Google Scholar 

  20. Albrektsson T, Zarb G, Worthington P, Eriksson AR (1986) The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants 1:11–25

    PubMed  Google Scholar 

  21. Buser D, Bragger U, Lang NP, Nyman S (1990) Regeneration and enlargement of jaw bone using guided tissue regeneration. Clin Oral Implants Res 1:22–32

    Article  PubMed  Google Scholar 

  22. Loe H, Silness J (1963) Periodontal disease in pregnancy. I. Prevalence and severity. Acta Odontol Scand 21:533–551

    Article  PubMed  Google Scholar 

  23. Mombelli A, van Oosten MA, Schurch E Jr, Land NP (1987) The microbiota associated with successful or failing osseointegrated titanium implants. Oral Microbiol Immunol 2:145–151

    Article  PubMed  Google Scholar 

  24. Muhlemann HR (1977) Psychological and chemical mediators of gingival health. J Prev Dent 4:6–17

    PubMed  Google Scholar 

  25. Zitzmann NU, Berglundh T (2008) Definition and prevalence of peri-implant diseases. J Clin Periodontol 35:286–291. doi:10.1111/j.1600-051X.2008.01274.x

    Article  PubMed  Google Scholar 

  26. Lekholm U, Zarb GA (1985) Patient selection and preparation. Quintessence Publishing Co., Chicago, USA

    Google Scholar 

  27. Zechner W, Watzak G, Gahleitner A, Busenlechner D, Tepper G, Watzek G (2003) Rotational panoramic versus intraoral rectangular radiographs for evaluation of peri-implant bone loss in the anterior atrophic mandible. Int J Oral Maxillofac Implants 18:873–878

    PubMed  Google Scholar 

  28. Kullman L, Al-Asfour A, Zetterqvist L, Andersson L (2007) Comparison of radiographic bone height assessments in panoramic and intraoral radiographs of implant patients. Int J Oral Maxillofac Implants 22:96–100

    PubMed  Google Scholar 

  29. Klein MO, Kammerer PW, Scholz T, Moergel M, Kirchmaier CM, Al-Nawas B (2010) Modulation of platelet activation and initial cytokine release by alloplastic bone substitute materials. Clin Oral Implants Res 21:336–345. doi:10.1111/j.1600-0501.2009.01830.x

    Article  PubMed  Google Scholar 

  30. Schindeler A, McDonald MM, Bokko P, Little DG (2008) Bone remodeling during fracture repair: the cellular picture. Semin Cell Dev Biol 19:459–466. doi:10.1016/j.semcdb.2008.07.004

    Article  PubMed  Google Scholar 

  31. Montes CC, Pereira FA, Thome G, Alves ED, Acedo RV, de Souza JR, Melo AC, Trevilatto PC (2007) Failing factors associated with osseointegrated dental implant loss. Implant Dent 16:404–412. doi:10.1097/ID.0b013e31815c8d31

    Article  PubMed  Google Scholar 

  32. Zeggel P (2000) Bioactive calcium phosphate coatings for dental implants. Int M Oral Implant 1:52–57

    Google Scholar 

  33. Morris HF, Ochi S, Spray JR, Olson JW (2000) Periodontal-type measurements associated with hydroxyapatite-coated and non-ha-coated implants: uncovering to 36 months. Ann Periodontol 5:56–67. doi:10.1902/annals.2000.5.1.56

    Article  PubMed  Google Scholar 

  34. Barrere F, van der Valk CM, Meijer G, Dalmeijer RA, de Groot K, Layrolle P (2003) Osteointegration of biomimetic apatite coating applied onto dense and porous metal implants in femurs of goats. J Biomed Mater Res B Appl Biomater 67:655–665. doi:10.1002/jbm.b.10057

    Article  PubMed  Google Scholar 

  35. Fontana F, Rocchietta I, Addis A, Schupbach P, Zanotti G, Simion M (2010) Effects of a calcium phosphate coating on the osseointegration of endosseous implants in a rabbit model. Clin Oral Implants Res. doi:10.1111/j.1600-0501.2010.02056.x

  36. Schliephake H, Scharnweber D, Dard M, Rößler S, Sewing A, Hüttmann C (2002) Biological performance of biomimetic calcium phosphate coating of titanium implants in the dog mandible. J Biomed Mater Res A 64A:225–234

    Article  Google Scholar 

  37. Steigenga JT, al-Shammari KF, Nociti FH, Misch CE, Wang HL (2003) Dental implant design and its relationship to long-term implant success. Implant Dent 12:306–317

    Article  PubMed  Google Scholar 

  38. Kahraman S, Bal BT, Asar NV, Turkyilmaz I, Tozum TF (2009) Clinical study on the insertion torque and wireless resonance frequency analysis in the assessment of torque capacity and stability of self-tapping dental implants. J Oral Rehabil 36:755–761. doi:10.1111/j.1365-2842.2009.01990.x

    Article  PubMed  Google Scholar 

  39. Rabel A, Kohler SG, Schmidt-Westhausen AM (2007) Clinical study on the primary stability of two dental implant systems with resonance frequency analysis. Clin Oral Investig 11:257–265. doi:10.1007/s00784-007-0115-2

    Article  PubMed  Google Scholar 

  40. Irinakis T, Wiebe C (2009) Clinical evaluation of the nobelactive implant system: a case series of 107 consecutively placed implants and a review of the implant features. J Oral Implantol 35:283–288. doi:10.1563/1548-1336-35.6.283

    Article  PubMed  Google Scholar 

  41. Alsaadi G, Quirynen M, Komarek A, van Steenberghe D (2008) Impact of local and systemic factors on the incidence of late oral implant loss. Clin Oral Implants Res 19:670–676. doi:10.1111/j.1600-0501.2008.01534.x

    PubMed  Google Scholar 

  42. Akca K, Chang TL, Tekdemir I, Fanuscu MI (2006) Biomechanical aspects of initial intraosseous stability and implant design: a quantitative micro-morphometric analysis. Clin Oral Implants Res 17:465–472

    Article  PubMed  Google Scholar 

  43. Schwarz S, Gabbert O, Hassel AJ, Schmitter M, Seche C, Rammelsberg P (2010) Early loading of implants with fixed dental prostheses in edentulous mandibles: 4.5-year clinical results from a prospective study. Clin Oral Implants Res. doi:10.1111/j.1600-0501.2009.01843.x

  44. Aparicio C, Rangert B, Sennerby L (2003) Immediate/early loading of dental implants: a report from the Sociedad Espanola de Implantes world congress consensus meeting in Barcelona, Spain, 2002. Clin Implant Dent Relat Res 5:57–60

    Article  PubMed  Google Scholar 

  45. Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochran DL, Hoffmann B, Lussi A, Steinemann SG (2004) Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res 83:529–533

    Article  PubMed  Google Scholar 

  46. Roos-Jansaker AM, Lindahl C, Renvert H, Renvert S (2006) Nine- to fourteen-year follow-up of implant treatment. Part II: presence of peri-implant lesions. J Clin Periodontol 33:290–295. doi:10.1111/j.1600-051X.2006.00906.x

    Article  PubMed  Google Scholar 

  47. Behneke A, Behneke N (2005) Recall and aftertreatment. Praxis der Zahnheilkunde. Urban & Fischer, München, Germany

    Google Scholar 

  48. Schwarz F, Mihatovic I, Ferrari D, Wieland M, Becker J (2010) Influence of frequent clinical probing during the healing phase on healthy peri-implant soft tissue formed at different titanium implant surfaces: a histomorphometrical study in dogs. J Clin Periodontol 37:551–562. doi:10.1111/j.1600-051X.2010.01568.x

    Article  PubMed  Google Scholar 

  49. Richter EJ, Jansen V, Spiekermann H, Jovanovic A (1992) Longtime results of imz- and tps-implants in the interforaminal area of the edentulous mandible. Dtsch Zahnärztl Z 47:449

    Google Scholar 

  50. Al-Nawas B, Kämmerer PW, Morbach T, Ladwein C, Wegener J, Wagner W (2011) Ten-year retrospective follow-up study of the tioblast dental implant. Clin Implant Dent Relat Res (in press)

Download references

Acknowledgment

Thanks to Prof. Dr. Dr. Bilal Al-Nawas for his help during data analysis and writing the paper.

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peer W. Kämmerer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palarie, V., Bicer, C., Lehmann, K.M. et al. Early outcome of an implant system with a resorbable adhesive calcium–phosphate coating—a prospective clinical study in partially dentate patients. Clin Oral Invest 16, 1039–1048 (2012). https://doi.org/10.1007/s00784-011-0598-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-011-0598-8

Keywords

Navigation