Skip to main content

Advertisement

Log in

Oxidative stress is responsible for genotoxicity of camphorquinone in primary human gingival fibroblasts

  • Short Communication
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The photoinitiator camphorquinone (CQ), used in dental restorative materials, was found to be cytotoxic in cell cultures. Previously, we have shown that CQ induces alkali labile sites and DNA strand breaks in human gingival fibroblasts (HGF) associated with an increase of intracellular reactive oxygen species (ROS). Therefore, the objective of our study was to evaluate if DNA damage in HGF cells is caused by the generation of ROS.

Material and methods

HGF cells were treated with different concentrations (0.5–2.5 mM) of CQ. The cell viability was assessed using propidium iodide (PI) assay. Oxidative DNA damage was evaluated by an enzyme-modified comet assay using human 8-hydroxyguanine DNA-glycosylase 1 (hOGG1), which converts oxidized 7,8-dihydro-8-oxoguanine (8-oxoguanine) into DNA strand breaks and functions as a marker for oxidative modified DNA.

Results

The results showed that CQ induced DNA damage in HGF cells without cytotoxic effects for the chosen treatment time. CQ treatment led to the generation of 8-oxoguanine in DNA, which can be shown by a significant increase in tail moment after CQ treatment by the enzyme-modified comet assay.

Conclusion

It may be concluded that DNA damage due to CQ is caused by oxidative stress in gingival fibroblasts.

Clinical relevance

A more detailed insight into genotoxic mechanisms in oral cells can be of great importance for a better understanding of the biocompatibility of CQ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Shi S, Nie J (2007) A natural component as a coinitiator for unfilled dental resin composites. J Biomed Mater Res B Appl Biomater 82(1):44–50

    Article  PubMed  Google Scholar 

  2. Park YJ, Chae KH, Rawls HR (1999) Development of a new photoinitiation system for dental light-cure composite resins. Dent Mater 15:120–127

    Article  PubMed  Google Scholar 

  3. Stansburry JW (2000) Curing dental resins and composites by photopolymerization. J Esthet Dent 12(6):300–308

    Article  Google Scholar 

  4. Neumann MG, Miranda WG Jr, Schmitt CC, Rueggeberg FA, Correa IC (2005) Molar extinction coefficients and the photon absorption efficiency of dental photoinitiators and light curing units. J Dent 33(6):525–532

    Article  PubMed  Google Scholar 

  5. Geurtsen W, Lehmann F, Spahl W, Leyhausen G (1998) Cytotoxicity of 35 dental resin composite monomers/additives in permanent 3 T3 and three human primary fibroblast cultures. J Biomed Mater Res 41(3):474–480

    Article  PubMed  Google Scholar 

  6. Michelsen VB, Moe G, Skalevik R, Jensen E, Lygre H (2007) Quantification of organic eluates from polymerized resin-based dental restorative materials by use of GC/MS. J Chromatogr B Analyt Technol Biomed Life Sci 850(1/2):83–91

    Article  PubMed  Google Scholar 

  7. Noda M, Wataha JC, Kaga M, Lockwood PE, Volkmann KR, Sano H (2002) Components of dentinal adhesives modulate heat shock protein 72 expression in heat-stressed THP-1 human monocytes at sublethal concentrations. J Dent Res 81(4):265–269

    Article  PubMed  Google Scholar 

  8. Taira M, Urabe H, Hirose T, Wakasa K, Yamaki M (1988) Analysis of photo-initiators in visible-light-cured dental composite resins. J Dent Res 67(1):24–28

    Article  PubMed  Google Scholar 

  9. Atsumi T, Iwakura I, Fujisawa S, Ueha T (2001) The production of reactive oxygen species by irradiated camphorquinone-related photosensitizers and their effect on cytotoxicity. Arch Oral Biol 46(5):391–401

    Article  PubMed  Google Scholar 

  10. Atsumi T, Ishihara M, Kadoma Y, Tonosaki K, Fujisawa S (2004) Comparative radical production and cytotoxicity induces by camphorquinone and 9-fluorenone against human pulp fibroblasts. J Oral Rehabil 31(12):1155–1164

    Article  PubMed  Google Scholar 

  11. Engelmann J, Volk J, Leyhausen G, Geurtsen W (2005) ROS formation and glutathione levels in human oral fibroblasts exposed to TEGDMA and camphorquinone. J Biomed Mater Res B Appl Biomater 75:272–276

    Article  PubMed  Google Scholar 

  12. Volk J, Ziemann C, Leyhausen G, Geurtsen W (2009) Non-irradiated campherquinone induces DNA damage in human gingival fibroblasts. Dent Mater 25:1556–1563

    Article  PubMed  Google Scholar 

  13. Waddington RJ, Moseley R, Embery G (2000) Reactive oxygen species: a potential role in the pathogenesis of periodontal disease. Oral Dis 6:138–151

    Article  PubMed  Google Scholar 

  14. Xu Y, DeMott MS, Hwang JT, Greenberg MM, Demple B (2003) Action of human apurinic endonuclease (Ape 1) on C1′-oxidized deoxyribose damage in DNA. DNA Repair 2:175–185

    Article  PubMed  Google Scholar 

  15. Spagnuolo G, Annunziata M, Rengo S (2004) Cytotoxicity and oxidative stress caused by dental adhesive systems cured with halogen and LED lights. Clin Oral Invest 8:81–85

    Article  Google Scholar 

  16. Pagoria D, Lee A, Geurtsen W (2005) The effect of camphorquinone (CQ) and CQ-related photosensitizers on the generation of reactive oxygen species and the production of oxidative DNA damage. Biomaterials 26(19):4091–4099

    Article  PubMed  Google Scholar 

  17. Heil J, Reifferscheid G, Waldmann P, Leyhausen G, Geurtsen W (1996) Genotoxicity of dental materials. Mutat Res 368(3/4):181–194

    Article  PubMed  Google Scholar 

  18. Li YC, Huang FM, Lee SS, Lin RH, Chang YC (2006) Protective effects of antioxidants on micronuclei induced by camphorquinone/N, N-dimethyl-p-toluidine employing in vitro mammalian test system. J Biomed Mat Res Part B: Appl Biomat. doi:10.1002/jbmb30700

    Google Scholar 

  19. Demple B, Harrison L (1994) Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem 63:915–948

    Article  PubMed  Google Scholar 

  20. Smith CC, O’Donovan MR, Martin EA (2006) hOGG1 recognizes oxidative damage using the comet assay with greater specificity than FPG or ENDOIII. Mutagenesis 21:185–190

    Article  PubMed  Google Scholar 

  21. Combrier E, Métézeau P, Ronot X, Gachelin H, Adolphe M (1989) Flow cytometric assessment of cell viability: a multifaceted analysis. Cytotechnol 2:27–37

    Article  Google Scholar 

  22. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  PubMed  Google Scholar 

  23. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35(3):206–221

    Article  PubMed  Google Scholar 

  24. Geurtsen W, Spahl W, Leyhausen G (1998) Residual monomer/additive release and variability in cytotoxicity of light-curing glass-ionomer cements and compomers. J Dent Res 77:2012–2019

    Article  PubMed  Google Scholar 

  25. Spahl W, Budzikiewics H, Geurtsen W (1998) Determination of leachable components from four commercial dental composites by gas and liquid chromatography/mass spectrometry. J Dent 26:137–145

    Article  PubMed  Google Scholar 

  26. Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26:249–261

    Article  PubMed  Google Scholar 

  27. Krifka S, Hiller KA, Spagnuolo G, Jewett A, Schmalz G, Schweikl H (2012) The influence of glutathione on redox regulation by antioxidant proteins and apoptosis in macrophages exposed to 2-hydroxyethyl methacrylate (HEMA). Biomaterials 33(21):5177–5186

    Article  PubMed  Google Scholar 

  28. Datar RA, Rueggeberg FA, Caughman GB, Wataha JC, Lewis JB, Schuster GS (2005) Effects of sub-toxic concentrations of camphorquinone on cell lipid metabolism. J Biomater Sci Polym Ed 16(10):1293–1302

    Article  PubMed  Google Scholar 

  29. Valavanidis A, Vlachogianni T, Fiotakis C (2009) 8-Hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health Part C 27:120–139

    Article  Google Scholar 

  30. van Loon B, Markkanen E, Hübscher U (2010) Oxygen as a friend and enemy: how to combat the mutational potential of 8-oxo-guanine. DNA Repair 9:604–616

    Article  PubMed  Google Scholar 

  31. Collins AR, Ai-guo M, Duthie SJ (1995) The kinetics of repair of oxidative DNA damage (strand breaks and oxidised pyrimidines) in human cells. Mut Res 336:69–77

    Article  Google Scholar 

  32. Armeni T, Battino M, Stronati A, Pugnaloni A, Tomassini G, Rosi G, Biagini G, Principato G (2001) Total antioxidant capacity and nuclear DNA damage in keratinocytes after exposure to H2O2. Biol Chem 382:1697–1705

    Article  PubMed  Google Scholar 

  33. Chevion M (1988) A site-specific mechanism for free radical induced biological damage: the essential role of redox-active transition metals. Free Radic Biol Med 5:27–37

    Article  PubMed  Google Scholar 

  34. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214

    Article  PubMed  Google Scholar 

  35. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85

    Article  PubMed  Google Scholar 

  36. Samuelsen JT, Dahl JE, Karlsson S, Morisbak E, Becher R (2007) Apoptosis induced by the monomers HEMA and TEGDMA involves formation of ROS and differential activation of the MAP-kinases p38, JNK and ERK. Dent Mater 23:34–39

    Article  PubMed  Google Scholar 

  37. Schweikl H, Hiller KA, Eckhardt A, Bolay C, Spagnuolo G, Stempfl T, Schmalz G (2008) Differential gene expression involved in oxidative stress response caused by triethylene glycol dimethacrylate. Biomaterials 29:1377–1387

    Article  PubMed  Google Scholar 

  38. Pawlowska E, Poplawski T, Ksiazek D, Szczepanska J, Blasiak J (2010) Genotoxicity and cytotoxicity of 2-hydroxyethyl methacrylate. Mut Res/Gen Tox Environ Mut 96(2):122–129

    Article  Google Scholar 

  39. Visalli G, Baluce B, La Maestra S, Micale RT, Cingano L, De Flora S, Di Pietro A (2013) Genotoxic damage in the oral mucosa cells of subjects carrying restorative dental fillings. Arch Toxicol 87:179–187

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Ms A. Beckedorf for her excellent technical assistance. The study was supported by the Deutsche Forschungsgemeinschaft/German National Science Foundation (VO1727/1-2).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Wessels.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wessels, M., Leyhausen, G., Volk, J. et al. Oxidative stress is responsible for genotoxicity of camphorquinone in primary human gingival fibroblasts. Clin Oral Invest 18, 1705–1710 (2014). https://doi.org/10.1007/s00784-013-1178-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-013-1178-x

Keywords

Navigation