Skip to main content

Advertisement

Log in

Nitrogen-containing bisphosphonates modulate the antigenic profile and inhibit the maturation and biomineralization potential of osteoblast-like cells

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The aim was to evaluate the effect of three nitrogen-containing bisphosphonates at different concentrations on osteoblast growth, differentiation, and antigenic profile, using the MG-63 cell line as osteoblast model, in order to determine the role of osteoblasts in bisphosphonate-related osteonecrosis of the jaw (BRONJ).

Materials and methods

Osteoblasts were incubated in culture medium with 10−5, 10−7, or 10−9 M of pamidronate, alendronate, or ibandronate. Proliferative capacity of the osteoblasts was determined by spectrophotometry (MTT) at 24 and 48 h of culture. Flow cytometry was used to study antigenic profile (CD54, CD80, CD86, HLA-DR) and phagocytic activity. Cell differentiation was evaluated at 7, 15, and 21 days by the study of nodule formation and alkaline phosphatase activity (ALP) at 24 h by spectrophotometric assay.

Results

Pamidronate, alendronate, and ibandronate each exerted a significant stimulatory effect on MG63 proliferation that depended on the dose and treatment duration (p < 0.05). In general, a significantly decreased expression of CD54, CD80, and HLA-DR membrane antigens was observed after 24 h of treatment with each nitrogen-containing bisphosphonate (p < 0.05), but there was no significant difference in phagocytic activity versus controls. A decrease in ALP activity was observed after 24 h of treatment and a decrease in calcium deposition after 15 and 21 days (p < 0.05).

Conclusion

Nitrogen-containing bisphosphonates can increase the proliferation of MG-63 osteoblast-like cells, modulate their expression of co-stimulatory molecules associated with immune function, and decrease their differentiation capacity, generally at low doses.

Clinical relevance

These findings suggest that low doses of nitrogen-containing bisphosphonates exert their effect on osteoblasts by altering their physiology, which would explain the disruption of their repair capacity and may be directly related to the development of BRONJ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eggelmeijer F, Papapoulos SE, van Paassen HC et al (1994) Clinical and biochemical response to single infusion of pamidronate in patients with active rheumatoid arthritis: a double blind placebo controlled study. J Rheumatol 21:2016–2020

    PubMed  Google Scholar 

  2. Rodan GA, Martin TJ (2000) Therapeutic approaches to bone diseases. Science 289:1508–1514

    Article  PubMed  Google Scholar 

  3. Lane JM, Khan SN, O’Connor WJ et al (2001) Bisphosphonate therapy in fibrous dysplasia. Clin Orthop 6–12

  4. Fleisch H (2002) Development of bisphosphonates. Breast Cancer Res BCR 4:30–34

    Article  Google Scholar 

  5. Frith JC, Mönkkönen J, Auriola S et al (2001) The molecular mechanism of action of the antiresorptive and antiinflammatory drug clodronate: evidence for the formation in vivo of a metabolite that inhibits bone resorption and causes osteoclast and macrophage apoptosis. Arthritis Rheum 44:2201–2210

    Article  PubMed  Google Scholar 

  6. Russell RGG (2007) Bisphosphonates: mode of action and pharmacology. Pediatrics 119(Suppl 2):S150–S162

    Article  PubMed  Google Scholar 

  7. Silverman SL, Maricic M (2007) Recent developments in bisphosphonate therapy. Semin Arthritis Rheum 37:1–12

    Article  PubMed  Google Scholar 

  8. Mashiba T, Mori S, Burr DB et al (2005) The effects of suppressed bone remodeling by bisphosphonates on microdamage accumulation and degree of mineralization in the cortical bone of dog rib. J Bone Miner Metab 23(Suppl):36–42

    Article  PubMed  Google Scholar 

  9. Santini D, Vincenzi B, Avvisati G et al (2002) Pamidronate induces modifications of circulating angiogenetic factors in cancer patients. Clin Cancer Res 8:1080–1084

    PubMed  Google Scholar 

  10. Landesberg R, Cozin M, Cremers S et al (2008) Inhibition of oral mucosal cell wound healing by bisphosphonates. J Oral Maxillofac Surg 66:839–847

    Article  PubMed Central  PubMed  Google Scholar 

  11. Marx RE (2003) Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic. J Oral Maxillofac Surg 61:1115–1117

    Article  PubMed  Google Scholar 

  12. Ruggiero SL, Mehrotra B, Rosenberg TJ, Engroff SL (2004) Osteonecrosis of the jaws associated with the use of bisphosphonates: a review of 63 cases. J Oral Maxillofac Surg 62:527–534

    Article  PubMed  Google Scholar 

  13. Neve A, Corrado A, Cantatore FP (2011) Osteoblast physiology in normal and pathological conditions. Cell Tissue Res 343:289–302

    Article  PubMed  Google Scholar 

  14. Eriksen EF (2010) Cellular mechanisms of bone remodeling. Rev Endocr Metab Disord 11:219–227

    Article  PubMed Central  PubMed  Google Scholar 

  15. Ruiz C, Pérez E, Vallecillo-Capilla M, Reyes-Botella C (2003) Phagocytosis and allogeneic T cell stimulation by cultured human osteoblast-like cells. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 13:309–314

    Article  Google Scholar 

  16. Ruiz C, Pérez E, García-Martínez O et al (2007) Expression of cytokines IL-4, IL-12, IL-15, IL-18, and IFNgamma and modulation by different growth factors in cultured human osteoblast-like cells. J Bone Miner Metab 25:286–292

    Article  PubMed  Google Scholar 

  17. Reyes-Botella C, Montes MJ, Vallecillo-Capilla MF et al (2002) Antigenic phenotype of cultured human osteoblast-like cells. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 12:359–364

    Article  Google Scholar 

  18. Reyes-Botella C, Montes MJ, Vallecillo-Capilla MF et al (2000) Expression of molecules involved in antigen presentation and T cell activation (HLA-DR, CD80, CD86, CD44 and CD54) by cultured human osteoblasts. J Periodontol 71:614–617

    Article  PubMed  Google Scholar 

  19. Pérez E, García-Martínez O, Arroyo-Morales M et al (2006) Modulation of antigenic phenotype in cultured human osteoblast-like cells by FGFb, TGFbeta1, PDGF-BB, IL-2, IL-1beta, LPS and IFNgamma. Biosci Rep 26:281–289

    Article  PubMed  Google Scholar 

  20. Lisignoli G, Toneguzzi S, Piacentini A et al (2004) Recruitment and proliferation of T lymphocytes is supported by IFNgamma- and TNFalpha-activated human osteoblasts: Involvement of CD54 (ICAM-1) and CD106 (VCAM-1) adhesion molecules and CXCR3 chemokine receptor. J Cell Physiol 198:388–398

    Article  PubMed  Google Scholar 

  21. Stanley KT, VanDort C, Motyl C et al (2006) Immunocompetent properties of human osteoblasts: interactions with T lymphocytes. J Bone Miner Res 21:29–36

    Article  PubMed  Google Scholar 

  22. Díaz-Rodríguez L, García-Martínez O, Arroyo-Morales M et al (2009) Antigenic phenotype and phagocytic capacity of MG-63 osteosarcoma line. Ann N Y Acad Sci 1173(Suppl 1):E46–E54

    Article  PubMed  Google Scholar 

  23. Rifas L, Arackal S, Weitzmann MN (2003) Inflammatory T cells rapidly induce differentiation of human bone marrow stromal cells into mature osteoblasts. J Cell Biochem 88:650–659

    Article  PubMed  Google Scholar 

  24. Chen T, Berenson J, Vescio R et al (2002) Pharmacokinetics and pharmacodynamics of zoledronic acid in cancer patients with bone metastases. J Clin Pharmacol 42:1228–1236

    Article  PubMed  Google Scholar 

  25. Manzano-Moreno FJ, Rodríguez-Martínez JB, Ramos-Torrecillas J et al (2013) Proliferation and osteogenic differentiation of osteoblast-like cells obtained from two techniques for harvesting intraoral bone grafts. Clin Oral Investig 17:1349–1356

    Article  PubMed  Google Scholar 

  26. Sandrini E, Morris C, Chiesa R et al (2005) In vitro assessment of the osteointegrative potential of a novel multiphase anodic spark deposition coating for orthopaedic and dental implants. J Biomed Mater Res B Appl Biomater 73:392–399

    Article  PubMed  Google Scholar 

  27. Krischak GD, Augat P, Blakytny R et al (2007) The non-steroidal anti-inflammatory drug diclofenac reduces appearance of osteoblasts in bone defect healing in rats. Arch Orthop Trauma Surg 127:453–458

    Article  PubMed  Google Scholar 

  28. Eingartner C, Coerper S, Fritz J et al (1999) Growth factors in distraction osteogenesis. Immuno-histological pattern of TGF-beta1 and IGF-I in human callus induced by distraction osteogenesis. Int Orthop 23:253–259

    Article  PubMed Central  PubMed  Google Scholar 

  29. Wang FS, Yang KD, Chen RF et al (2002) Extracorporeal shock wave promotes growth and differentiation of bone-marrow stromal cells towards osteoprogenitors associated with induction of TGF-beta1. J Bone Joint Surg (Br) 84:457–461

    Article  Google Scholar 

  30. Chen Y-J, Wurtz T, Wang C-J et al (2004) Recruitment of mesenchymal stem cells and expression of TGF-beta 1 and VEGF in the early stage of shock wave-promoted bone regeneration of segmental defect in rats. J Orthop Res 22:526–534

    Article  PubMed  Google Scholar 

  31. Boanini E, Torricelli P, Gazzano M et al (2014) Combined effect of strontium and zoledronate on hydroxyapatite structure and bone cell responses. Biomaterials 35:5619–5626

    Article  PubMed  Google Scholar 

  32. Mattioli-Belmonte M, Cometa S, Ferretti C, et al. (2014) Characterization and cytocompatibility of an antibiotic/chitosan/cyclodextrins nanocoating on titanium implants. Carbohydr Polym 22;110:173–82

  33. Lee YJ, Jeong JK, Seol JW, et al. (2013) Activated protein C differentially regulates both viability and differentiation of osteoblasts mediated by bisphosphonates. Exp Mol Med 15;45:e9

  34. Im G-I, Qureshi SA, Kenney J et al (2004) Osteoblast proliferation and maturation by bisphosphonates. Biomaterials 25:4105–4115

    Article  PubMed  Google Scholar 

  35. Xiong Y, Yang HJ, Feng J et al (2009) Effects of alendronate on the proliferation and osteogenic differentiation of MG-63 cells. J Int Med Res 37:407–416

    Article  PubMed  Google Scholar 

  36. Kim HK, Kim JH, Abbas AA, Yoon TR (2009) Alendronate enhances osteogenic differentiation of bone marrow stromal cells: a preliminary study. Clin Orthop 467:3121–3128

    Article  PubMed Central  PubMed  Google Scholar 

  37. Idris AI, Rojas J, Greig IR et al (2008) Aminobisphosphonates cause osteoblast apoptosis and inhibit bone nodule formation in vitro. Calcif Tissue Int 82:191–201

    Article  PubMed  Google Scholar 

  38. Orriss IR, Key ML, Colston KW, Arnett TR (2009) Inhibition of osteoblast function in vitro by aminobisphosphonates. J Cell Biochem 106:109–118

    Article  PubMed  Google Scholar 

  39. Frediani B, Spreafico A, Capperucci C et al (2004) Long-term effects of neridronate on human osteoblastic cell cultures. Bone 35:859–869

    Article  PubMed  Google Scholar 

  40. De Luna-Bertos E, Ramos-Torrecillas J, García-Martínez O et al (2013) Therapeutic doses of nonsteroidal anti-inflammatory drugs inhibit osteosarcoma MG-63 osteoblast-like cells maturation, viability, and biomineralization potential. ScientificWorldJournal 2013:809891

    PubMed Central  PubMed  Google Scholar 

  41. Díaz-Rodríguez L, García-Martínez O, Morales MA et al (2012) Effects of indomethacin, nimesulide, and diclofenac on human MG-63 osteosarcoma cell line. Biol Res Nurs 14:98–107

    Article  PubMed  Google Scholar 

  42. García-Martínez O, Díaz-Rodríguez L, Rodríguez-Pérez L et al (2011) Effect of acetaminophen, ibuprofen and methylprednisolone on different parameters of human osteoblast-like cells. Arch Oral Biol 56:317–323

    Article  PubMed  Google Scholar 

  43. Ing SW, Belury MA (2011) Impact of conjugated linoleic acid on bone physiology: proposed mechanism involving inhibition of adipogenesis. Nutr Rev 69:123–131

    Article  PubMed  Google Scholar 

  44. Naidu A, Dechow PC, Spears R et al (2008) The effects of bisphosphonates on osteoblasts in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 106:5–13

    Article  PubMed  Google Scholar 

  45. Gebken J, Feydt A, Brinckmann J et al (1999) Ligand-induced downregulation of receptors for TGF-beta in human osteoblast-like cells from adult donors. J Endocrinol 161:503–510

    Article  PubMed  Google Scholar 

  46. Balooch G, Balooch M, Nalla RK et al (2005) TGF-beta regulates the mechanical properties and composition of bone matrix. Proc Natl Acad Sci U S A 102:18813–18818

    Article  PubMed Central  PubMed  Google Scholar 

  47. Walter C, Al-Nawas B, Frickhofen N et al (2010) Prevalence of bisphosphonate associated osteonecrosis of the jaws in multiple myeloma patients. Head Face Med 6:11

    Article  PubMed Central  PubMed  Google Scholar 

  48. Boonyapakorn T, Schirmer I, Reichart PA et al (2008) Bisphosphonate-induced osteonecrosis of the jaws: prospective study of 80 patients with multiple myeloma and other malignancies. Oral Oncol 44:857–869

    Article  PubMed  Google Scholar 

  49. Yépez Guillén JV, Martínez de Páez N (2009) Gottberg de Nogueira E osteonecrosis de los maxilares inducida por bifosfonatos. Rev Odontol Andes 4:43–54

    Google Scholar 

  50. Marx RE, Cillo JE Jr, Ulloa JJ (2007) Oral bisphosphonate-induced osteonecrosis: risk factors, prediction of risk using serum CTX testing, prevention, and treatment. J Oral Maxillofac Surg 65:2397–2410

    Article  PubMed  Google Scholar 

  51. Walter C, Grötz KA, Kunkel M, Al-Nawas B (2007) Prevalence of bisphosphonate associated osteonecrosis of the jaw within the field of osteonecrosis. Support Care Cancer 15:197–202

    Article  PubMed  Google Scholar 

  52. Nancollas GH, Tang R, Phipps RJ et al (2006) Novel insights into actions of bisphosphonates on bone: differences in interactions with hydroxyapatite. Bone 38:617–627

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by research group BIO277 (Junta de Andalucía).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga García-Martínez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manzano-Moreno, F.J., Ramos-Torrecillas, J., De Luna-Bertos, E. et al. Nitrogen-containing bisphosphonates modulate the antigenic profile and inhibit the maturation and biomineralization potential of osteoblast-like cells. Clin Oral Invest 19, 895–902 (2015). https://doi.org/10.1007/s00784-014-1309-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-014-1309-z

Keywords

Navigation