Skip to main content

Advertisement

Log in

Zinc-modified nanopolymers improve the quality of resin–dentin bonded interfaces

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Introduction

Demineralized collagen fibers at the hybrid layer are susceptible to degradation. Remineralization may aid to improve bond longevity.

Objectives

The aim of the present study was to infiltrate zinc and calcium-loaded polymeric nanoparticles into demineralized dentin to facilitate hybrid layer remineralization.

Materials and methods

Zinc or calcium-loaded polymeric nanoparticles were infiltrated into etched dentin, and Single Bond Adhesive was applied. Bond strength was tested after 24 h and 6 months storage. Nanomechanical properties, dye-assisted confocal laser microscopy, and Masson’s trichrome staining evaluation were performed to assess for the hybrid layer morphology, permeability, and remineralization ability after 24 h and 3 months. Data were analyzed by ANOVA and Student–Newman–Keuls multiple comparisons tests (p < 0.05).

Results

Immediate bond strength was not affected by nanoparticles infiltration (25 to 30 MPa), while after 6 months, bond strengths were maintained (22 to 24 MPa). After 3 months, permeability occurred only in specimens in which nanoparticles were not infiltrated. Dentin remineralization, at the bottom of the hybrid layer, was observed in all groups. After microscopy analysis, zinc-loaded nanoparticles were shown to facilitate calcium deposition throughout the entire hybrid layer. Young’s modulus at the hybrid layer increased from 2.09 to 3.25 GPa after 3 months, in specimens with zinc nanoparticles; meanwhile, these values were reduced from 1.66 to 0.49 GPa, in the control group.

Conclusion

Infiltration of polymeric nanoparticles into demineralized dentin increased long-term bond strengths. Zinc-loaded nanoparticles facilitate dentin remineralization within the complete resin–dentin interface.

Clinical relevance

Resin–dentin bond longevity and dentin remineralization at the hybrid layer were facilitated by zinc-loaded nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu Y, Tjäderhane L, Breschi L, Mazzoni A, Li N, Mao J, Pashley DH, Tay FR (2011) Limitations in bonding to dentin and experimental strategies to prevent bond degradation. J Dent Res 90:953–968. doi:10.1177/0022034510391799

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sauro S, Osorio R, Watson TF, Toledano M (2012) Therapeutic effects of novel resin bonding systems containing bioactive glasses on mineral-depleted areas within the bonded-dentine interface. J Mater Sci Mater Med 23:1521–1532. doi:10.1007/s10856-012-4606-6

    Article  PubMed  Google Scholar 

  3. Osorio R, Yamauti M, Sauro S, Watson TF, Toledano M (2014) Zinc incorporation improves biological activity of beta-tricalcium silicate resin-based cement. J Endod 40:1840–1845. doi:10.1016/j.joen.2014.06.016

    Article  PubMed  Google Scholar 

  4. Sauro S, Osorio R, Osorio E, Watson TF, Toledano M (2013) Novel light-curable materials containing experimental bioactive micro-fillers remineralise mineral-depleted bonded-dentine interfaces. J Biomater Sci Polym Ed 24:940–956. doi:10.1080/09205063.2012.727377

    Article  PubMed  Google Scholar 

  5. Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774. doi:10.1016/j.biomaterials.2011.01.004

    Article  PubMed  Google Scholar 

  6. Kinney JH, Habelitz S, Marshall SJ, Marshall GW (2003) The importance of intrafibrillar mineralization of collagen on the mechanical properties of dentin. J Dent Res 82:957–961. doi:10.1177/154405910308201204

    Article  PubMed  Google Scholar 

  7. Thompson VP, Watson TF, Marshall GW Jr, Blackman BR, Stansbury JW, Schadler LS, Pearson RA, Libanori R (2013) Outside-the-(cavity-prep)-box thinking. Adv Dent Res 25:24–32. doi:10.1177/0022034513502207

    Article  PubMed  PubMed Central  Google Scholar 

  8. Osorio R, Osorio E, Medina-Castillo AL, Toledano M (2014) Polymer nanocarriers for dentin adhesion. J Dent Res 93:1258–1263. doi:10.1177/0022034514551608

    Article  PubMed  PubMed Central  Google Scholar 

  9. Leonor IB, Balas F, Kawashita M, Reis RL, Kokubo T, Nakamura T (2009) Biomimetic apatite deposition on polymeric microspheres treated with a calcium silicate solution. J Biomed Mat Res B Appl Biomat 91:239–247. doi:10.1002/jbm.b.31395

    Article  Google Scholar 

  10. Wu C, Zhang Y, Fan W, Ke X, Hu X, Zhou Y, Xiao Y (2011) CaSiO3 microstructure modulating the in vitro and in vivo bioactivity of poly(lactide-co-glycolide) microspheres. J Biomed Mater Res Part A 98A:122–131. doi:10.1002/jbm.a.33092

    Article  Google Scholar 

  11. Musyanovych A, Landfester K (2014) Polymer micro- and nanocapsules as biological carriers with multifunctional properties. Macromol Biosci 14:458–477. doi:10.1002/mabi.201300551

    Article  PubMed  Google Scholar 

  12. Osorio R, Yamauti M, Osorio E, Ruiz-Requena ME, Pashley DH, Tay FR, Toledano M (2011) Zinc reduces collagen degradation in demineralized human dentin explants. J Dent 39:148–153. doi:10.1016/j.jdent.2010.11.005

    Article  PubMed  Google Scholar 

  13. Lynch RJ, Churchley D, Butler A, Kearns S, Thomas GV, Badrock TC, Cooper L, Higham SM (2011) Effects of zinc and fluoride on the remineralisation of artificial carious lesions under simulated plaque fluid conditions. Caries Res 45:313–322. doi:10.1159/000324804

    Article  PubMed  Google Scholar 

  14. Sauro S, Osorio R, Watson TF, Toledano M (2015) Influence of phosphoproteins’ biomimetic analogs on remineralization of mineral-depleted resin-dentin interfaces created with ion-releasing resin-based systems. Dent Mat 31:759–777. doi:10.1016/j.dental.2015.03.013

    Article  Google Scholar 

  15. Profeta AC, Mannocci F, Foxton R, Watson TF, Feitosa VP, De Carlo B, Mongiorgi R, Valdré G, Sauro S (2013) Experimental etch-and-rinse adhesives doped with bioactive calcium silicate-based micro-fillers to generate therapeutic resin-dentin interfaces. Dent Mater 29:729–741. doi:10.1016/j.dental.2013.04.001

    Article  PubMed  Google Scholar 

  16. Toledano M, Aguilera FS, Osorio E, Cabello I, Toledano-Osorio M, Osorio R (2015) Self-etching zinc-doped adhesives improve the potential of caries-affected dentin to be functionally remineralized. Biointerphases 15;10:031002. doi:10.1116/1.4926442.

  17. Toledano M, Aguilera FS, Osorio E, Cabello I, Osorio R (2014) Microanalysis of thermal-induced changes at the resin-dentin interface. Microsc Microanal 20:1218–1233. doi:10.1017/S1431927614000944

    Article  PubMed  Google Scholar 

  18. Tay FR, Carvalho RM, Yiu CK, King NM, Zhang Y, Agee K, Bouillaguet S, Pashley DH (2000) Mechanical disruption of dentin collagen fibrils during resin-dentin bond testing. J Adhes Dent 2:175–192

    PubMed  Google Scholar 

  19. Bertassoni LE, Habelitz S, Pugach M, Soares PC, Marshall SJ, Marshall GW Jr (2010) Evaluation of surface structural and mechanical changes following remineralization of dentin. Scanning 32:312–319. doi:10.1002/sca.20199

    Article  PubMed  PubMed Central  Google Scholar 

  20. Besinis A, van Noort R, Martin N (2012) Infiltration of demineralized dentin with silica and hydroxyapatite nanoparticles. Dent Mater 28:1012–1023. doi:10.1016/j.dental.2012.05.007

    Article  PubMed  Google Scholar 

  21. Besinis A, van Noort R, Martin N (2014) Remineralization potential of fully demineralized dentin infiltrated with silica and hydroxyapatite nanoparticles. Dent Mater 30:249–262. doi:10.1016/j.dental.2013.11.014

    Article  PubMed  Google Scholar 

  22. Li J, Yang J, Li J, Chen L, Liang K, Wu W, Chen X, Li J (2013) Bioinspired intrafibrillar mineralization of human dentine by PAMAM dendrimer. Biomaterials 34:6738–6747. doi:10.1016/j.biomaterials.2013.05.046

    Article  PubMed  Google Scholar 

  23. Song J, Malathong V, Bertozzi CR (2005) Mineralization of synthetic polymer scaffolds: a bottom-up approach for the development of artificial bone. J Am Chem Soc 16;127(10):3366–3372. doi:10.1021/ja043776z

  24. Toledano M, Osorio E, Cabello I, Osorio R (2014b) Early dentine remineralisation: morpho-mechanical assessment. J Dent 42:384–394. doi:10.1016/j.jdent.2014.01.012

    Article  PubMed  Google Scholar 

  25. Zhang Y, Yuan Y, Liu C (2008) Fluorescent labeling of nanometer hydroxyapatite. J Mater Sci Technol 24:187–191

    Google Scholar 

  26. Rahn BA, Perren SM (1971) Xylenol orange, a fluorochrome useful in polychrome sequential labeling of calcifying tissues. Stain Technol 46:125–129

    Article  PubMed  Google Scholar 

  27. Niu LN, Zhang W, Pashley DH, Breschi L, Mao J, Chen JH, Tay FR (2014) Biomimetic remineralization of dentin. Dent Mater 30:77–96. doi:10.1016/j.dental.2013.07.013

    Article  PubMed  Google Scholar 

  28. Kim J, Mai S, Carrilho MR, Yiu CK, Pashley DH, Tay FR (2010) An all-in-one adhesive does not etch beyond hybrid layers. J Dent Res 89:482–487. doi:10.1177/0022034510363665

    Article  PubMed  PubMed Central  Google Scholar 

  29. Stansbury JW, Dickens SH (2001) Network formation and compositional drift during photo-initiated copolymerization of dimethacrylate monomers. Polymer 42:6363–6369. doi:10.1016/S0032-3861(01)00106-9

    Article  Google Scholar 

  30. Bertassoni LE, Habelitz S, Marshall SJ, Marshall GW (2011) Mechanical recovery of dentin following remineralization in vitro—an indentation study. J Biomech 44:176–181. doi:10.1016/j.jbiomech.2010.09.005

    Article  PubMed  PubMed Central  Google Scholar 

  31. Osorio R, Cabello I, Toledano M (2014) Bioactivity of zinc-doped dental adhesives. J Dent 42:403–412. doi:10.1016/j.jdent.2013.12.006

    Article  PubMed  Google Scholar 

  32. Toledano M, Sauro S, Cabello I, Watson T, Osorio R (2013) A Zn-doped etch-and-rinse adhesive may improve the mechanical properties and the integrity at the bonded-dentin interface. Dent Mater 29:142–152. doi:10.1016/j.dental.2013.04.024

    Article  Google Scholar 

  33. De Munck J, Mine A, Vivan Cardoso M, Van Landuyt KL, Lührs AK, Poitevin A, Hanabusa M, Kuboki T, Van Meerbeek B (2013) Hydrolytic stability of three-step etch-and-rinse adhesives in occlusal class-I cavities. Clin Oral Investig 17:1911–1918. doi:10.1007/s00784-012-0884-0

    Article  PubMed  Google Scholar 

  34. Alkatheeri MS, Palasuk J, Eckert GJ, Platt JA, Bottino MC (2015) Halloysite nanotube incorporation into adhesive systems-effect on bond strength to human dentin. Clin Oral Investig 19:1905–1912. doi:10.1007/s00784-015-1413-8

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant, MINECO/FEDER MAT2014-52036-P. Authors do not have a financial relationship with the organization that sponsored the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Osorio.

Ethics declarations

Ethical approval

All procedures performed in the present study, involving human participants, were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Funding

This study was funded by the Ministerio Español de Economía y Competitividad, grant number MINECO/FEDER MAT2014-52036-P. Authors do not have a financial relationship with the organization that sponsored the research.

Conflict of interest

The authors declare that they have no competing interests.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osorio, R., Cabello, I., Medina-Castillo, A.L. et al. Zinc-modified nanopolymers improve the quality of resin–dentin bonded interfaces. Clin Oral Invest 20, 2411–2420 (2016). https://doi.org/10.1007/s00784-016-1738-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-016-1738-y

Keywords

Navigation