Skip to main content

Advertisement

Log in

Short implants versus bone grafting and standard-length implants placement: a systematic review

  • Review
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The aim of this study was to conduct a systematic review to compare the survival rates between short implants (length < 10 mm) versus standard-length implants (≥ 10 mm) inserted in grafted bone. As secondary outcomes, marginal bone loss and survival rates of the implant supported prostheses were also analysed.

Materials and methods

Randomised controlled trials (RCT) that compared both techniques were searched on three electronic databases till June 2016, a manual search was performed on the bibliography of the collected articles, and the authors were contacted for additional references. The estimates of the interventions were expressed in relative risk (RR), mean implant survival rates and mean differences in marginal bone.

Results

Eight RCTs were included in this study. From a total of 458 short implants, 15 failed (mean survival rates = 96.7%), While from 488 regular implants, 13 failed (mean survival rates = 97.3%). The technique did not significantly affect: the implant failure rate (P > 0.05), with RR of 1.34 (95% CI 0.67–2.87), the mean differences of marginal bone loss (P = 0.18; MD − 0.04 mm [− 0.10; 0.02] 95% CI), at loading or prosthesis failures rates (RR:0.98; 95% CI 0.40–2.41). The mean differences of marginal bone at 1 year follow-up (post loading) presented significant marginal changes in the short implant group (P = 0.002; MD − 0.10 mm [− 0.16; − 0.03] 95% CI) although a significant high heterogeneity was found between groups.

Conclusions

This systematic review suggests no difference between both techniques in the treatment of atrophic arches. However, more long-term RCTs are needed to evaluate the predictability at the long run.

Clinical relevance

The use of short implants might be considered an alternative treatment, since it usually requires fewer surgical phases and tends to be a more affordable option.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Muneeb AKB, Jamil B (2013) Causes and pattern of partial edentulism/exodontia and its association with age and gender: semi rural population, Baqai Dental college, Karachi, Pakistan. Idjsr 1(3):13–18

    Google Scholar 

  2. van der Velden U, Amaliya A, Loos BG, Timmerman MF, van der Weijden FA, Winkel EG, Abbas F (2015) Java project on periodontal diseases: causes of tooth loss in a cohort of untreated individuals. J Clin Periodontol 42(9):824–831. https://doi.org/10.1111/jcpe.12446

    Article  PubMed  Google Scholar 

  3. Baelum V, van Palenstein HW, Hugoson A, Yee R, Fejerskov O (2007) A global perspective on changes in the burden of caries and periodontitis: implications for dentistry. J Oral Rehabil 34(12):872–906; discussion 940. https://doi.org/10.1111/j.1365-2842.2007.01799.x

    Article  PubMed  Google Scholar 

  4. Madhankumar S, Mohamed K, Natarajan S, Kumar VA, Athiban I, Padmanabhan TV (2015) Prevalence of partial edentulousness among the patients reporting to the Department of Prosthodontics Sri Ramachandra University Chennai, India: an epidemiological study. J Pharm Bioallied Sci 7(Suppl 2):S643–S647. https://doi.org/10.4103/0975-7406.163580

    Article  PubMed  PubMed Central  Google Scholar 

  5. Adell R, Lekholm U, Rockler B, Branemark PI (1981) A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 10(6):387–416

    Article  PubMed  Google Scholar 

  6. Pennington JPS (2012) Improving quality of life using removable and fixed implant prostheses. Compend Contin Educ Dent 33(4):268–270 272, 274-266

    PubMed  Google Scholar 

  7. Karthik K, Sivakumar S, Thangaswamy V (2013) Evaluation of implant success: a review of past and present concepts. J Pharm Bioallied Sci 5(Suppl 1):S117–S119. https://doi.org/10.4103/0975-7406.113310

    Article  PubMed  PubMed Central  Google Scholar 

  8. Santiago Junior JF, Pellizzer EP, Verri FR, de Carvalho PS (2013) Stress analysis in bone tissue around single implants with different diameters and veneering materials: a 3-D finite element study. Mater Sci Eng C Mater Biol Appl 33(8):4700–4714

    Article  PubMed  Google Scholar 

  9. Urban IA, Jovanovic SA, Lozada JL (2009) Vertical ridge augmentation using guided bone regeneration (GBR) in three clinical scenarios prior to implant placement: a retrospective study of 35 patients 12 to 72 months after loading. Int J Oral Maxillofac Implants 24(3):502–510

    PubMed  Google Scholar 

  10. Monje A, Pikos MA, Chan HL, Suarez F, Gargallo-Albiol J, Hernandez-Alfaro F, Galindo-Moreno P, Wang HL (2014) On the feasibility of utilizing allogeneic bone blocks for atrophic maxillary augmentation. Biomed Res Int 2014:814578. https://doi.org/10.1155/2014/814578

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pjetursson BE, Tan WC, Zwahlen M, Lang NP (2008) A systematic review of the success of sinus floor elevation and survival of implants inserted in combination with sinus floor elevation. J Clin Periodontol 35(8 Suppl):216–240. https://doi.org/10.1111/j.1600-051X.2008.01272.x

    Article  PubMed  Google Scholar 

  12. Schwarz L, Schiebel V, Hof M, Ulm C, Watzek G, Pommer B (2015) Risk factors of membrane perforation and postoperative complications in sinus floor elevation surgery: review of 407 augmentation procedures. J Oral Maxillofac Surg 73(7):1275–1282. https://doi.org/10.1016/j.joms.2015.01.039

    Article  PubMed  Google Scholar 

  13. Jensen AT, Jensen SS, Worsaae N (2016) Complications related to bone augmentation procedures of localized defects in the alveolar ridge. A retrospective clinical study. Oral Maxillofac Surg 20(2):115–122. https://doi.org/10.1007/s10006-016-0551-8

    Article  PubMed  Google Scholar 

  14. Raviv E, Turcotte A, Harel-Raviv M (2010) Short dental implants in reduced alveolar bone height. Quintessence Int 41(7):575–579

    PubMed  Google Scholar 

  15. das Neves FD, Fones D, Bernardes SR, do Prado CJ, Neto AJ (2006) Short implants—an analysis of longitudinal studies. Int J Oral Maxillofac Implants 21(1):86–93

    PubMed  Google Scholar 

  16. Neldam CA, Pinholt EM (2012) State of the art of short dental implants: a systematic review of the literature. Clin Implant Dent Relat Res 14(4):622–632. https://doi.org/10.1111/j.1708-8208.2010.00303.x

    Article  PubMed  Google Scholar 

  17. Piero P, Lorenzo C, Daniele R, Rita G, Luca P, Giorgio P (2015) Survival of short dental implants ≤7 mm: A review. Int J Contemp Dent Med Rev 2015:Article ID: 011015. 10.15713/ins.ijcdmr.89

    Google Scholar 

  18. Egger MSG, Altman DG (2008) Chapter 2. Principles of and procedures for systematic reviews. BMJ Publishing Group, London. https://doi.org/10.1002/9780470693926.ch2

    Google Scholar 

  19. Pistilli R, Felice P, Piattelli M, Gessaroli M, Soardi E, Barausse C, Buti J, Corvino V (2013) Posterior atrophic jaws rehabilitated with prostheses supported by 5 x 5 mm implants with a novel nanostructured calcium-incorporated titanium surface or by longer implants in augmented bone. One-year results from a randomised controlled trial. Eur J Oral Implantol 6(4):343–357

    PubMed  Google Scholar 

  20. Pistilli R, Felice P, Cannizzaro G, Piatelli M, Corvino V, Barausse C, Buti J, Soardi E, Esposito M (2013) Posterior atrophic jaws rehabilitated with prostheses supported by 6 mm long 4 mm wide implants or by longer implants in augmented bone. One-year post-loading results from a pilot randomised controlled trial. Eur J Oral Implantol 6(4):359–372

    PubMed  Google Scholar 

  21. Felice P, Cannizzaro G, Barausse C, Pistilli R, Esposito M (2014 Winter) Short implants versus longer implants in vertically augmented posterior mandibles: a randomised controlled trial with 5-year after loading follow-up. Eur J Oral Implantol. 7(4):359–369

    PubMed  Google Scholar 

  22. Esposito M, Pistilli R, Barausse C, Felice P (2014 Winter) Three-year results from a randomised controlled trial comparing prostheses supported by 5-mm long implants or by longer implants in augmented bone in posterior atrophic edentulous jaws. Eur J Oral Implantol 7(4):383–395

    PubMed  Google Scholar 

  23. Felice P, Pistilli R, Barausse C, Bruno V, Trullenque-Eriksson A, Esposito M (2015 Winter) Short implants as an alternative to crestal sinus lift: a 1-year multicentre randomised controlled trial. Eur J Oral Implantol. 8(4):375–384

    PubMed  Google Scholar 

  24. Esposito M, Barausse C, Pistilli R, Sammartino G, Grandi G, Felice P (2015 Autumn) Short implants versus bone augmentation for placing longer implants in atrophic maxillae: one-year post-loading results of a pilot randomised controlled trial. Eur J Oral Implantol. 8(3):257–268

    PubMed  Google Scholar 

  25. Thoma DS, Haas R, Tutak M, Garcia A, Schincaglia GP, Hämmerle CH (2015 Jan) Randomized controlled multicentre study comparing short dental implants (6 mm) versus longer dental implants (11-15 mm) in combination with sinus floor elevation procedures. Part 1: demographics and patient-reported outcomes at 1 year of loading. J Clin Periodontol 42(1):72–80. https://doi.org/10.1111/jcpe.12323

    Article  PubMed  Google Scholar 

  26. Guljé FL, Raghoebar GM, Vissink A, Meijer HJA. (2014) Single crowns in the resorbed posterior maxilla supported by either 6-mm implants or by 11-mm implants combined with sinus floor elevation surgery: A 1-year randomised controlled trial. Eur J Oral Implantol 7(3):247–55

  27. Esposito M, Felice P, Worthington HV (2014) Interventions for replacing missing teeth: augmentation procedures of the maxillary sinus. Cochrane Database Syst Rev (5):CD008397. doi:https://doi.org/10.1002/14651858.CD008397.pub2

  28. Koszuta P, Grafka A, Koszuta A, Lopucki M, Szymanska J (2015) Effects of selected factors on the osseointegration of dental implants. Prz Menopauzalny 14(3):184–187. https://doi.org/10.5114/pm.2015.54343

    PubMed  PubMed Central  Google Scholar 

  29. Chambrone L, Preshaw PM, Ferreira JD, Rodrigues JA, Cassoni A, Shibli JA (2014) Effects of tobacco smoking on the survival rate of dental implants placed in areas of maxillary sinus floor augmentation: a systematic review. Clin Oral Implants Res 25(4):408–416. https://doi.org/10.1111/clr.12186

    Article  PubMed  Google Scholar 

  30. Bezerra Ferreira JD, Rodrigues JA, Piattelli A, Iezzi G, Gehrke SA, Shibli JA (2016) The effect of cigarette smoking on early osseointegration of dental implants: a prospective controlled study. Clin Oral Implants Res 27(9):1123–1128. https://doi.org/10.1111/clr.12705

    Article  PubMed  Google Scholar 

  31. Holahan CMWJ, Weaver A, Assad D, Koka S (2011) Relationship between systemic bone mineral density and local bone quality as effectors of dental implant survival. Clin Implant Dent Relat Res 13(1):29–33. https://doi.org/10.1111/j.1708-8208.2009.00206.x

    Article  PubMed  Google Scholar 

  32. Goiato MC, dos Santos DM, Santiago JF Jr, Moreno A, Pellizzer EP (2014) Longevity of dental implants in type IV bone: a systematic review. Int J Oral Maxillofac Surg 43(9):1108–1116. https://doi.org/10.1016/j.ijom.2014.02.016

    Article  PubMed  Google Scholar 

  33. Nisand D (2000) Renouard F (2014) short implant in limited bone volume. Periodontol 66(1):72–96. https://doi.org/10.1111/prd.12053

    Article  Google Scholar 

  34. Engelhardt S, Papacosta P, Rathe F, Ozen J, Jansen JA, Junker R (2015) Annual failure rates and marginal bone-level changes of immediate compared to conventional loading of dental implants. A systematic review of the literature and meta-analysis. Clin Oral Implants Res 26(6):671–687. https://doi.org/10.1111/clr.12363

    Article  PubMed  Google Scholar 

  35. Chrcanovic BR, Albrektsson T, Wennerberg A (2015) Dental implants inserted in fresh extraction sockets versus healed sites: a systematic review and meta-analysis. J Dent 43(1):16–41. https://doi.org/10.1016/j.jdent.2014.11.007

    Article  PubMed  Google Scholar 

  36. Isidor F (2006) Influence of forces on peri-implant bone. Clin Oral Implants Res 17(Suppl 2):8–18. https://doi.org/10.1111/j.1600-0501.2006.01360.x

    Article  PubMed  Google Scholar 

  37. Blanes RJ (2009) To what extent does the crown-implant ratio affect the survival and complications of implant-supported reconstructions? A systematic review. Clin Oral Implants Res 20(Suppl 4):67–72. https://doi.org/10.1111/j.1600-0501.2009.01762.x

    Article  PubMed  Google Scholar 

  38. Sotto-Maior BS, Senna PM, da Silva-Neto JP, de Arruda Nobilo MA, Del Bel Cury AA (2015) Influence of crown-to-implant ratio on stress around single short-wide implants: a photoelastic stress analysis. J Prosthodont 24(1):52–56. https://doi.org/10.1111/jopr.12171

    Article  PubMed  Google Scholar 

  39. Ramos Verri F, Santiago Junior JF, de Faria Almeida DA, de Oliveira GB, de Souza Batista VE, Marques Honorio H, Noritomi PY, Pellizzer EP (2015) Biomechanical influence of crown-to-implant ratio on stress distribution over internal hexagon short implant: 3-D finite element analysis with statistical test. J Biomech 48(1):138–145. https://doi.org/10.1016/j.jbiomech.2014.10.021

    Article  PubMed  Google Scholar 

  40. Albrektsson TZG, Worthington P, Eriksson AR (1986) The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants 1(1):11–25

    PubMed  Google Scholar 

  41. Qian J, Wennerberg A, Albrektsson T (2012) Reasons for marginal bone loss around oral implants. Clin Implant Dent Relat Res 14(6):792–807. https://doi.org/10.1111/cid.12014

    Article  PubMed  Google Scholar 

  42. Sanz M, Vignoletti F (2015) Key aspects on the use of bone substitutes for bone regeneration of edentulous ridges. Dent Mater 31(6):640–647. https://doi.org/10.1016/j.dental.2015.03.005

    Article  PubMed  Google Scholar 

  43. Monje A, Suarez F, Galindo-Moreno P, Garcia-Nogales A, Fu JH, Wang HL (2014) A systematic review on marginal bone loss around short dental implants (<10 mm) for implant-supported fixed prostheses. Clin Oral Implants Res 25(10):1119–1124. https://doi.org/10.1111/clr.12236

    Article  PubMed  Google Scholar 

  44. Galindo-Moreno P, Fauri M, Avila-Ortiz G, Fernandez-Barbero JE, Cabrera-Leon A, Sanchez-Fernandez E (2005) Influence of alcohol and tobacco habits on peri-implant marginal bone loss: a prospective study. Clin Oral Implants Res 16(5):579–586. https://doi.org/10.1111/j.1600-0501.2005.01148.x

    Article  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Evidence Based Dentistry Center, Lisbon University and Implant Dentistry Department, European University of Madrid.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this systematic review.

Corresponding author

Correspondence to Duarte Nuno da Silva Marques.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palacios, J.A.V., Garcia, J.J., Caramês, J.M.M. et al. Short implants versus bone grafting and standard-length implants placement: a systematic review. Clin Oral Invest 22, 69–80 (2018). https://doi.org/10.1007/s00784-017-2205-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-017-2205-0

Keywords

Navigation